BSC’s FusionCAT Project Grows Membership to Accelerate Fusion with HPC

September 27, 2021

Sept. 27, 2021 — The Barcelona Supercomputing Center (BSC) is coordinating FusionCAT, an initiative that brings together seven Catalan institutions to collaborate in the field of research and development of fusion energy technology. The BSC is also participating in the three technical projects of the initiative: Project 1: “Towards the complete integrated modeling of a fusion reactor,” Project 2: “Neutronics, Tritium production and operational fuel cycle,” and Project 3: “Study of the fusion reactor.” In addition, the BSC helps FusionCAT partners disseminate and exploit the project’s results to the academic and industrial sectors to promote research and training in the field of fusion. The objective is to communicate, identify, and protect the projects’ outcomes authorship to create and stimulate a fusion community in Catalonia.

The BSC’s team involved in FusionCAT has grown from seven members at the project’s launch to the current 25 professionals. This growth has established a highly multidisciplinary working force with the objective of effectively facing the challenges posed by the project close to its half-point. The team comprises experts in physics, mathematics, computer science, engineering, project management and technology transfer, and it is led by the ICREA researcher Mervi Mantsinen with more than 23 years of experience in the field of fusion. “FusionCAT enables BSC to explore novel areas with great potential for advancement based on our unique combination of High-Performance Computing (HPC) and fusion expertise,” says Mervi Mantsinen. The methodology applied by the BSC team is widely recognized by the fusion community and has proven its validity in the past.

In the first 2 years of the project, the BSC has developed the first versions of the magnetism and neutron transport modules for its software Alya, has progressed in the coupled thermodynamics and fluid dynamics simulation of an ITER’s first wall segment, has validated several fusion community software against JET experimental data, is in the process of integrating them in ITER’s Analysis Suite IMAS, and has made progress in new materials atomic-level modeling. Other consortium members have progressed in tritium and lithium sensors, liquid metal simulations, catalytic membrane reactor for the recovery of hydrogen and fuel clean-up, particle acceleration components design, IFMIF facilities design, and Supercritical CO2 power cycles.

Plasma and fusion reactors are highly complex systems from the physical, numerical, and computational points of view. To model these, it is necessary to consider multiple physical phenomena at multiple spatiotemporal scales. Understanding the physics involved requires the integration of all these elements (for instance, to know how each factor of the reaction affects the others or how the cooling system captures the released energy), the validation of the results, and the subsequent integration into research tools for the research community. To achieve this, BSC has developed three tasks within Project 1: the implementation of multiphysics codes based on ALYA (parallel code of computational mechanics) to be able to model complex multiphysics systems, the experimental validation of codes for fusion, and the integration of codes in the production lines that will be used during ITER’s operation.

The future energy production reactors, such as DEMO, are committed to a fuel cycle based on an enormous production of neutrons from plasma and on the use of the breeding blanket to multiply further the number of neutrons produced to maintain the operational fuel cycle. However, to achieve efficient energy production, it is necessary to optimize the plant’s fuel cycle. Project 2 focuses on the fusion fuel cycle and its effects on the reactor and the components related to neutrons, lithium, and tritium. To this end, in close collaboration with CONICET (Argentina), BSC develops a new deterministic neutron transport code based on Boltzmann’s transport equation based on the finite element method. At present, Monte Carlo codes such as MCNP are commonly used in fusion neutronics, although they are more computationally expensive and focused on local analysis. Alternatively, the implementation of deterministic codes allows a global and less expensive analysis of the geometry, which is an advantage. Our development is based on the neutron transport code implemented in ALYA and aims to considerably increase the fidelity of this module to allow realistic predictions of fusion reactors, contributing to the development of a cutting-edge computational tool capable of tackling this complex multiphysics problem in existing and future fusion devices. Furthermore, this tool will potentially meet future challenges in fusion reactor design due to its HPC capabilities allowing the analysis of different variants of a design. Thus, the expected impact of this tool for the development of fusion as an energy source will be high and placed within the “Tritium self-sufficiency and the design of the Test Blanket Module (TBM)” mission of the European fusion energy roadmap.

The development of future power plant reactors such as DEMO requires advances in several technologies required for future construction. In Project 3, BSC focuses on the highly specialized study of technologies for the design of magnets based on High-Temperature Superconducting (HTS) materials and the evaluation of the materials’ resistance for the construction of the fusion reactor.

HTS technology has reached sufficient maturity to be considered for constructing the main magnets of Tokamak fusion reactors. Proof of this is the proliferation of innovative geometries based on their excellent magnetic field performance, which allows a drastic reduction in the size and cost. The manufacture of magnets with HTS materials will allow the generation of the high magnetic fields needed for the confinement of the plasma in the reactor and will also improve the operation range, the temperature conditions, and the operating costs. The application of HTS materials in the field of fusion requires materials evaluation, from the point of view of the cables’ manufacture, which is used in large HTS magnets. Nowadays, different wiring configurations are being investigated to optimize their mechanical, thermal and electromagnetic behaviour. To meet fusion requirements, the main goals to be achieved are: improving the conductivity at the joints, enhancing the mechanical performance, moderating losses when carrying alternating current (AC), and better zone propagation in the resistive zone in accidental transitions to the non-superconducting state (“quench”). Achieving these goals requires additional cable development and cable coatings optimization and the development of multiphysics analysis tools for magnet and cable design. To this end, BSC FusionCAT’s Project 3, in close collaboration with the Institute of Materials Science of Barcelona (ICMAB-CSIC), will extend the ALYA code to study the multiphysics character for HTS magnet materials design.

Finding safe and durable materials for the construction of fusion reactors is one of the key challenges for the generation of fusion power. In Project 3, BSC studies different methods to reduce the complexity of the simulations of these materials at the atomic scale. Starting from the Density Functional Theory (DFT), which is probably the most widely used ab-initio method (based on quantum chemistry), and using these results for the development of force fields (interatomic potentials). These potentials will be used for a classical description of the material from molecular dynamics simulations. In this way, much larger systems can be simulated, also considering the time and at realistic temperature conditions. We will combine different simulation methods and scales, from ab-initio calculations (high precision, high-cost and easy transferability) to classical force fields (limited precision and transferability, at a much lower computational cost). Our goal is to combine these approaches and contribute to a multiscale description of fusion materials under irradiation, working towards the production of materials suitable for fusion applications.

Read the original press release here.


Source: Barcelona Supercomputing Center

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Energy Exascale Earth System Model Version 2 Promises Twice the Speed

October 18, 2021

The Energy Exascale Earth System Model (E3SM) is an ongoing Department of Energy (DOE) earth system modeling, simulation and prediction project aiming to “assert and maintain an international scientific leadership posi Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire