Cancer Treatments Get a Supercomputing Boost

May 10, 2017

AUSTIN, May 10, 2017 — Radiation therapy shoots high-energy particles into the body to destroy or damage cancer cells. Over the last century, the technologies used have constantly improved and it has become a highly effective way to treat cancer. However, physicians must still walk a fine line between delivering enough radiation to kill tumors, while sparing surrounding healthy tissue.

“Historically, radiation has been a blunt tool,” said Matt Vaughn, Director of Life Science Computing at the Texas Advanced Computing Center. “However, it’s become ever more precise because we understand the physics and biology of systems that we’re shooting radiation into, and have improved our ability to target the delivery of that radiation.”

The science of calculating and assessing the radiation dose received by the human body is known as dosimetry – and here, as in many areas of science, advanced computing plays an important role.

Improving Radiation Therapy with Real-Time Imaging

Current radiation treatments rely on imaging from computed tomography (CT) scans taken prior to treatment to determine a tumor’s location. This works well if the tumor lies in an easily detectable and immobile location, but less so if the area is moving, as in the case of lung cancer.

Illustration of the MR-linac. The inner ring is the MRI bore which performs the imaging of the patient. The outer ring is the gantry on which the linear accelerator (linac) that produces the radiation for treatment is mounted. The linac gantry can rotate completely around. In the center is the bed where the patient would lie. [Courtesy: Elekta]

At the University of Texas MD Anderson Cancer Center, scientists are tackling the problem of accurately attacking tumors using a new technology known as an MR-linac that combines magnetic resonance (MR) imaging with linear accelerators (linacs). Developed by Elekta in cooperation with UMC Utrecht and Philips, the MR-linac at MD Anderson is the first of its kind in the U.S.

MR-linacs can image a patient’s anatomy while the radiation beam is being delivered. This allows doctors to detect and visualize any anatomical changes in a patient during treatment. Unlike CT or other x-ray based imaging modalities, which provide additional ionizing radiation, MRI is harmless to healthy tissue.

The MR-linac method offers a potentially significant improvement over current image-guided cancer treatment technology. However, to ensure patients are treated safely, scientists must first correct for the influence of the MRI’s magnetic field on the measurements used to calibrate the radiation dose being delivered.

Researchers use software called Geant4 to simulate radiation within the detectors. Originally developed by CERN to simulate high energy particle physics experiments, the MD Anderson team has adapted Geant4 to incorporate magnetic fields into their computer dosimetry model.

“Since the ultimate aim of the MR-linac is to treat patients, it is important that our simulations be very accurate and that the results be very precise,” said Daniel O’Brien, a postdoctoral fellow in radiation physics at MD Anderson. “Geant4 was originally designed to study radiation at much higher energies than what is used to treat patients. We had to perform tests to make sure that we had the accuracy that we needed.”

Using the Lonestar supercomputer at the Texas Advanced Computing Center (TACC), the research team simulated nearly 17 billion particles of radiation per detector to get the precision that they needed for their study.

In August 2016, they published magnetic field correction factors in Medical Physics for six of the most-used ionization chamber detectors (gas-filled chambers that are used to ensure the dose delivered from a therapy unit is correct). They are now working on verifying these results experimentally.

“The MR-linac is a very promising technology but it also presents many unique challenges from a dosimetry point of view,” O’Brien said. “Over time, our understanding of these effects has improved considerably, but there is still work to be done and resources like TACC are an invaluable asset in making these new technologies safe and reliable.”

“Our computer simulations are important because their results will serve as the foundation to extend current national and international protocols to perform calibration of conventional linacs to MR-linacs,” said Gabriel Sawakuchi, assistant professor of Radiation Physics at MD Anderson. “However, it is important that our results be validated against measurements and independent simulations performed by other groups before used clinically.”

(The project was partially funded by Elekta, a Swedish company that provides radiation therapy equipment and clinical management for the treatment of cancer and brain disorders.)

Read the full release at https://www.tacc.utexas.edu/-/targeted-high-energy-cancer-treatments-get-a-supercomputing-boost


Source: Aaron Dubrow, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire