CENIC Extends 400G Capabilities to Coastal Path Between Los Angeles and Sunnyvale

August 10, 2020

LA MIRADA, Calif. & BERKELEY, Calif., Aug. 10, 2020 — CENIC is now able to provide high-capacity services, from 100G to 400G and beyond, on its coastal path between Los Angeles and Sunnyvale. The research and education network upgraded its optical line system along the 460-mile path, including nodes in Santa Barbara, San Luis Obispo, and Soledad.

CENIC’s California Research and Education Network (CalREN) serves the vast majority of K-20 students, educators, researchers, and individuals at other vital public-serving institutions. CalREN operates over 8,000 miles of fiber optic cable and serves more than 20 million users.

New high-capacity capabilities along the coastal route are part of CENIC’s strategic plan to upgrade its optical network to the latest 400G-plus capable technology. In 2019, CENIC upgraded the southern path of its network between Los Angeles and Riverside, including nodes in Tustin, Oceanside, San Diego, Escondido, and Sun City. Work will start in the fall on upgrades to the final inland path, which completes the network ring from Sunnyvale back to Los Angeles and includes nodes in Oakland, Sacramento, Fergus, Fresno, and Bakersfield.

“Next-generation infrastructure ensures CENIC can easily meet today’s networking demands while remaining flexible to meet the needs of tomorrow,” said CENIC President and CEO Louis Fox. “These upgrades provide CENIC’s members a more robust and efficient network on which to conduct data-intensive research, support teaching and learning, provide cutting-edge medical care, and enhance community engagement.”

To develop the new 400G coastal route, CENIC staff upgraded the existing backbone network from fixed-grid technology to flex-grid spectrum Reconfigurable Optical Add-Drop Multiplexers (ROADMs). Flex grid optimizes the amount of spectrum used per wavelength, enabling more data capacity to be provisioned over fiber spans.

“We no longer have to be restricted to fixed-grid implementations,” said Sana Bellamine, CENIC senior optical engineer. “This new method maximizes the capacity over the fiber, and it enables us to deploy next-generation transponders that can deliver high-capacity services at a lower price per bit.”

New high-capacity services will help address increasingly urgent needs for advanced cyberinfrastructure, especially as supercomputers approach exascale capabilities. Notably, scientific research done by CENIC members such as the University of California, Stanford University, California Institute of Technology, the Naval Postgraduate School, and California State University includes astronomy, genomics, climatology, seismology, and other domains. These researchers require massive big-data workflows, which include collecting, transferring, processing, and storing huge data sets as they collaborate with colleagues at institutions across California, the nation, and the world.

Regionally, CENIC’s high-capacity links will support the Pacific Research Platform (PRP), a partnership of more than 50 institutions, led by researchers at UC San Diego and UC Berkeley, with support from the National Science Foundation. PRP builds on the optical backbone of Pacific Wave, a project of CENIC and Pacific Northwest Gigapop, to create a high-speed freeway for large scientific data sets by connecting campus networks and supercomputing centers on a regional scale, with Science DMZs at each site.

Developed by the US Department of Energy’s Energy Science Network (ESnet) engineers, the Science DMZ model addresses common network performance bottlenecks encountered at research institutions by creating an environment that is tailored to the needs of high-performance science applications, including high-volume bulk data transfer, remote experiment control, and data visualization. PRP’s design supports university researcher data analysis for projects such as the Large Hadron Collider (LHC), the NSF’s South Pole Neutrino Detector (IceCube), and the Laser Interferometer Gravitational-Wave Observatory (LIGO).

Nationally, CENIC’s high-capacity connections will also support efforts such as FABRIC, an NSF-funded platform for “reimagining the Internet.” FABRIC will provide a nationwide testbed for scientists to explore how data can be stored, computed, and moved through shared infrastructure to build the Internet architecture of the future. FABRIC anticipates a 1 terabit-per-second (Tbps) network, interconnecting nodes at major research and supercomputing centers, including the San Diego Supercomputer Center, and other connections along the West Coast.

About CENIC 

CENIC connects California to the world — advancing education and research statewide by providing the world-class network essential for innovation, collaboration, and economic growth. This nonprofit organization operates the California Research and Education Network (CalREN), a high-capacity network designed to meet the unique requirements of over 20 million users, including the vast majority of K-20 students together with educators, researchers, and individuals at other vital public-serving institutions. CENIC’s Charter Associates are part of the world’s largest education system; they include the California K-12 system, California Community Colleges, the California State University system, California’s public libraries, the University of California system, Stanford, Caltech, USC, and the Naval Postgraduate School. CENIC also provides connectivity to leading-edge institutions and industry research organizations around the world, serving the public as a catalyst for a vibrant California.


Source: CENIC 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire