CERN’s LHC Experiments Increase Use of GPUs to Improve Computing Infrastructure

February 4, 2022

Feb. 4, 2022 — Analyzing as many as one billion proton collisions per second or tens of thousands of very complex lead collisions is not an easy job for a traditional computer farm. With the latest upgrades of the LHC experiments due to come into action next year, their demand for data processing potential has significantly increased. As their new computational challenges might not be met using traditional central processing units (CPUs), the four large experiments are adopting graphics processing units (GPUs).

A candidate HLT node for Run 3, equipped with two AMD Milan 64-core CPUs and two NVIDIA Tesla T4 GPUs. Credit: CERN

GPUs are highly efficient processors, specialized in image processing, and were originally designed to accelerate the rendering of three-dimensional computer graphics. Their use has been studied in the past couple of years by the LHC experiments, the Worldwide LHC Computing Grid (WLCG) and CERN openlab. Increasing the use of GPUs in high-energy physics will improve not only the quality and size of the computing infrastructure, but also the overall energy efficiency.

“The LHC’s ambitious upgrade program poses a range of exciting computing challenges; GPUs can play an important role in supporting machine-learning approaches to tackling many of these,” says Enrica Porcari, Head of the CERN IT department. “Since 2020, the CERN IT department has provided access to GPU platforms in the data center, which have proven popular for a range of applications. On top of this, CERN openlab is carrying out important investigations into the use of GPUs for machine learning through collaborative R&D projects with industry and the Scientific Computing Collaborations group is working to help port – and optimize – key code from the experiments.”

ALICE has pioneered the use of GPUs in its high-level trigger online computer farm (HLT) since 2010 and is the only experiment using them to such a large extent to date. The newly upgraded ALICE detector has more than 12 billion electronic sensor elements that are read out continuously, creating a data stream of more than 3.5 terabytes per second. After first-level data processing, there remains a stream of up to 600 gigabytes per second. These data are analyzed online on a high-performance computer farm, implementing 250 nodes, each equipped with eight GPUs and two 32-core CPUs. Most of the software that assembles individual particle detector signals into particle trajectories (event reconstruction) has been adapted to work on GPUs.

Visualization of a 2 ms time frame of Pb-Pb collisions at a 50 kHz interaction rate in the ALICE TPC. Tracks from different primary collisions are shown in different colors. Credit: ALICE/CERN

In particular, the GPU-based online reconstruction and compression of the data from the Time Projection Chamber, which is the largest contributor to the data size, allows ALICE to further reduce the rate to a maximum of 100 gigabytes per second before writing the data to the disk. Without GPUs, about eight times as many servers of the same type and other resources would be required to handle the online processing of lead collision data at a 50 kHz interaction rate.

ALICE successfully employed online reconstruction on GPUs during the LHC pilot beam data taking at the end of October 2021. When there is no beam in the LHC, the online computer farm is used for offline reconstruction. In order to leverage the full potential of the GPUs, the full ALICE reconstruction software has been implemented with GPU support, and more than 80% of the reconstruction workload will be able to run on the GPUs.

From 2013 onwards, LHCb researchers carried out R&D work into the use of parallel computing architectures, most notably GPUs, to replace parts of the processing that would traditionally happen on CPUs. This work culminated in the Allen project, a complete first-level real-time processing implemented entirely on GPUs, which is able to deal with LHCb’s data rate using only around 200 GPU cards. Allen allows LHCb to find charged particle trajectories from the very beginning of the real-time processing, which are used to reduce the data rate by a factor of 30–60 before the detector is aligned and calibrated and a more complete CPU-based full detector reconstruction is executed. Such a compact system also leads to substantial energy efficiency savings.

Starting in 2022, the LHCb experiment will process 4 terabytes of data per second in real time, selecting 10 gigabytes of the most interesting LHC collisions each second for physics analysis. LHCb’s unique approach is that instead of offloading work, it will analyse the full 30 million particle-bunch crossings per second on GPUs.

Together with improvements to its CPU processing, LHCb has also gained almost a factor of 20 in the energy efficiency of its detector reconstruction since 2018. LHCb researchers are now looking forward to commissioning this new system with the first data of 2022, and building on it to enable the full physics potential of the upgraded LHCb detector to be realized.

CMS reconstructed LHC collision data with GPUs for the first time during the LHC pilot beams in October last year. During the first two runs of the LHC, the CMS HLT ran on a traditional computer farm comprising over 30 000 CPU cores. However, as the studies for the Phase 2 upgrade of CMS have shown, the use of GPUs will be instrumental in keeping the cost, size and power consumption of the HLT farm under control at higher LHC luminosity. And in order to gain experience with a heterogeneous farm and the use of GPUs in a production environment, CMS will equip the whole HLT with GPUs from the start of Run 3: the new farm will be comprised of a total of 25 600 CPU cores and 400 GPUs.

The additional computing power provided by these GPUs will allow CMS not only to improve the quality of the online reconstruction but also to extend its physics program, running the online data scouting analysis at a much higher rate than before. Today about 30% of the HLT processing can be offloaded to GPUs: the calorimeters local reconstruction, the pixel tracker local reconstruction, the pixel-only track and vertex reconstruction. The number of algorithms that can run on GPUs will grow during Run 3, as other components are already under development.

ATLAS is engaged in a variety of R&D projects towards the use of GPUs both in the online trigger system and more broadly in the experiment. GPUs are already used in many analyses; they are particularly useful for machine learning applications where training can be done much more quickly. Outside of machine learning, ATLAS R&D efforts have focused on improving the software infrastructure in order to be able to make use of GPUs or other more exotic processors that might become available in a few years. A few complete applications, including a fast calorimeter simulation, also now run on GPUs, which will provide the key examples with which to test the infrastructure improvements.

“All these developments are occurring against a backdrop of unprecedented evolution and diversification of computing hardware. The skills and techniques developed by CERN researchers while learning how to best utilize GPUs are the perfect platform from which to master the architectures of tomorrow and use them to maximize the physics potential of current and future experiments,” says Vladimir Gligorov, who leads LHCb’s Real Time Analysis project.


Source: CERN

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Announces New HPC Factory in Czech Republic

May 18, 2022

A week ahead of ISC High Performance 2022 (set to be held in Hamburg, Germany), supercomputing heavyweight HPE has announced a major investment in sovereign European computing: its first European factory, housed in the C Read more…

Hyperion Study Tracks Rise and Impact of Linux Supercomputers

May 17, 2022

That supercomputers produce impactful, lasting value is a basic tenet among the HPC community. To make the point more formally, Hyperion Research has issued a new report, The Economic and Societal Benefits of Linux Super Read more…

ECP Director Doug Kothe Named ORNL Associate Laboratory Director

May 16, 2022

The Department of Energy's Oak Ridge National Laboratory (ORNL) has selected Doug Kothe to be the next Associate Laboratory Director for its Computing and Computational Sciences Directorate (CCSD), HPCwire has learned. K Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Person to Watch. In this exclusive Q&A, Culhane covers her Read more…

AWS Solution Channel

shutterstock 1103121086

Encoding workflow dependencies in AWS Batch

Most users of HPC or Batch systems need to analyze data with multiple operations to get meaningful results. That’s really driven by the nature of scientific research or engineering processes – it’s rare that a single task generates the insight you need. Read more…

Argonne Supercomputer Advances Energy Storage Research

May 13, 2022

The lack of large-scale energy storage bottlenecks many sources of renewable energy, such as sunlight-reliant solar power and unpredictable wind power. Researchers from Lawrence Livermore National Laboratory (LLNL) are w Read more…

HPE Announces New HPC Factory in Czech Republic

May 18, 2022

A week ahead of ISC High Performance 2022 (set to be held in Hamburg, Germany), supercomputing heavyweight HPE has announced a major investment in sovereign Eur Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Per Read more…

Supercomputing an Image of Our Galaxy’s Supermassive Black Hole

May 13, 2022

A supermassive black hole called Sagittarius A* (yes, the asterisk is part of it!) sits at the center of the Milky Way. Now, for the first time, we can see it. Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Intel Extends IPU Roadmap Through 2026

May 10, 2022

Intel is extending its roadmap for infrastructure processors through 2026, the company said at its Vision conference being held in Grapevine, Texas. The company's IPUs (infrastructure processing units) are megachips that are designed to improve datacenter efficiency by offloading functions such as networking control, storage management and security that were traditionally... Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

Intel’s Habana Labs Unveils Gaudi2, Greco AI Processors

May 10, 2022

At the hybrid Intel Vision event today, Intel’s Habana Labs team launched two major new products: Gaudi2, the second generation of the Gaudi deep learning training processor; and Greco, the successor to the Goya deep learning inference processor. Intel says that the processors offer significant speedups relative to their predecessors and the... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Facebook Parent Meta’s New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will be used to help build new AI models, develop augmented reality tools, seamlessly analyze multimedia data and more. The supercomputer’s... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

In Partnership with IBM, Canada to Get Its First Universal Quantum Computer

February 3, 2022

IBM today announced it will deploy its first quantum computer in Canada, putting Canada on a short list of countries that will have access to an IBM Quantum Sys Read more…

Supercomputer Simulations Show How Paxlovid, Pfizer’s Covid Antiviral, Works

February 3, 2022

Just about a month ago, Pfizer scored its second huge win of the pandemic when the U.S. Food and Drug Administration issued another emergency use authorization Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

D-Wave to Go Public with SPAC Deal; Expects ~$1.6B Market Valuation

February 8, 2022

Quantum computing pioneer D-Wave today announced plans to go public via a SPAC (special purpose acquisition company) mechanism. D-Wave will merge with DPCM Capital in a transaction expected to produce $340 million in cash and result in a roughly $1.6 billion initial market valuation. The deal is expected to be completed in the second quarter of 2022 and the new company will be traded on the New York Stock... Read more…

Intel Announces Falcon Shores CPU-GPU Combo Architecture for 2024

February 18, 2022

Intel held its 2022 investor meeting yesterday, covering everything from the imminent Sapphire Rapids CPUs to the hotly anticipated (and delayed) Ponte Vecchio GPUs. But somewhat buried in its summary of the meeting was a new namedrop: “Falcon Shores,” described as “a new architecture that will bring x86 and Xe GPU together into a single socket.” The reveal was... Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Nvidia Acquires Software-Defined Storage Provider Excelero

March 7, 2022

Nvidia has announced that it has acquired Excelero. The high-performance block storage provider, founded in 2014, will have its technology integrated into Nvidia’s enterprise software stack. Nvidia is not disclosing the value of the deal. Excelero’s core product, Excelero NVMesh, offers software-defined block storage via networked NVMe SSDs. NVMesh operates through... Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire