Cloud Computing Testbed Chameleon Launches Third Phase with Focus on IoT and Reproducibility

August 14, 2020

Aug. 14, 2020 — Over the past decade, cloud computing grew from a tool used primarily by large scientific collaborations to one of the core technologies beneath the hood of the internet and other critical systems. That evolution continues today, as the Internet of Things (IoT), more powerful mobile applications, and serverless computing drive new scientific and commercial uses of cloud computing.

Since it launched in 2015, Chameleon has enabled these innovations by providing thousands of computer scientists with the bare metal access they need to assemble and test new cloud computing approaches. Under a new four-year, $10 million grant from the National Science Foundation, the cloud computing testbed led by the University of Chicago will further broaden its scope, adding new features for reproducibility, IoT and networking experimentation, and GPU computation to its core mission.

“Chameleon is a scientific instrument for computer science systems research,” said Kate Keahey, Consortium for Advanced Science and Engineering (CASE) Senior Scientist affiliated with the University of Chicago Department of Computer Science, Senior Computer Scientist at Argonne National Laboratory, and principal investigator of the Chameleon project. “Astronomers have telescopes, biologists have microscopes, and computer scientists have Chameleon.”

In its first five years, Chameleon has attracted more than 4,000 users from over 100 institutions, working on more than 500 different research and education projects. Scientists have used the testbed to study power management, operating systems, virtualization, high performance computing, distributed computing, security, machine learning, and many other research areas. Educators have used Chameleon for cloud computing courses, allowing college and high school students to build their own cloud and learn the inner workings of the technology.

You can read more “Lessons Learned from the Chameleon Testbed” in the team’s paper from the 2020 USENIX Annual Technical Conference.

Growing interest among the Chameleon user community has driven the new priorities for the next phase of the project, Keahey said. A surge in edge computing, fueled by Internet of Things devices that supplement local computation with cloud resources, motivated the creation of a new “Bring Your Own Device” process for users to connect IoT technologies to Chameleon. These new capabilities will support users such as the Sage project, a UChicago/Argonne/Northwestern collaboration studying the deployment of sensor networks in urban and natural environments.

“Some of the most exciting emergent research directions are in developing the cloud to edge continuum,” said Pete Beckman, Director of the Sage project and Co-Director of the Northwestern Argonne Institute of Science and Engineering. “Partnering with Chameleon will allow our users to tap into the potential of such a combined platform.”

Chameleon will also add expanded tools for reproducible research, allowing users to more easily publish and share the details and results of their experiments so that other scientists can replicate and build upon their work. After integration with Jupyter notebooks proved popular with the Chameleon community, the team began work on a sharing portal integrated with the Zenodo platform, where experiments can be easily published and discovered.

Additionally, the third phase of Chameleon introduces new options for software-defined networking, including compatibility with networking testbed project FABRIC, as well as new hardware and storage resources at the project’s two sites: UChicago, and the Texas Advanced Computing Center (TACC).

Unlike traditional computer science testbeds, which are typically configured using technologies developed in-house, the CHameleon Infrastructure (CHI) on which the project is built provides the same capabilities on top of the mainstream open-source OpenStack project. This feature enables Chameleon to provide familiar interfaces to users and operators, as well as work with a large and active development community associated with the project, both making and leveraging contributions. To expand access to computer science research testbeds, the project will continue development of its “CHI-in-a-Box” testbed packaging.

“CHI-in-a-Box allows you to not only build a testbed very, very quickly,” Keahey said. “But it also contains a packaging of our operations model including testbed monitoring as well as failure detection and mitigation tools. The idea is to lower the cost of this type of testbed so that we can have more of them, and allow more researchers to run more experiments.”

“Chameleon is a great example of how shared infrastructure with over 4,000 users can save the academic community time and money while catalyzing new research results,” said Deepankar Medhi, Program Director in the Computer & Information Sciences & Engineering Directorate (CISE) at the National Science Foundation. “NSF is pleased to fund Chameleon for four more years in order to extend the platform with new capabilities, thus allowing researchers to conduct new lines of research and students to learn newer technologies.”


Source: Department of Computer Science, University of Chicago

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire