CMU Scientists Use XSEDE-Allocated Resources to Simulate Improved Battery Components

July 11, 2019

July 11, 2019 — The move toward cleaner, cheaper energy would be much easier if we had more powerful, safer battery technologies. Carnegie Mellon University (CMU) scientists have used the XSEDE-allocated Bridges system at the Pittsburgh Supercomputing Center (PSC) and Comet at the San Diego Supercomputer Center (SDSC) to simulate new battery component materials that are inherently safer and more powerful than currently possible.

One of the predicted new low cobalt structures of Li Nix Mn y Co 1-x-y O2 with a ratio of nickel to maganese to cobalt of 18:5:1. The nickel is shown in grey, the maganese in magenta and the cobalt in blue. The lithium layer is shown in green and oxygen in red. Image courtesy of Pittsburgh Supercomputing Center. 

Why It’s Important:

Better batteries might not make all our energy problems vanish. But they’d be a really good start. Companies as varied as Tesla, Chevrolet, Jaguar and Audi have begun selling electric cars. This promises a generation of vehicles that run on whatever technology at a given time provides the most economical—and cleanest—electricity. But the performance of today’s batteries falls short for use in larger vehicles, such as trucks and aircraft. By the same token, wind and, increasingly, solar power are becoming important actors in the U.S. energy grid. But they’d be far more cost-efficient if we could store the peak power they generate during the day, so that it can be used whenever needed. Again, today’s batteries aren’t quite up to it.

“Many companies are moving toward personal vehicles being electrified. Moving to larger vehicles such as trucks or aviation requires a higher energy density; and as we approach higher energy densities, the technical problems become bigger,” said Gregory Houchins, CMU.

There’s a gap between what today’s battery technology can do and what’s needed for these transformations. Batteries’ ability to store energy—their “energy density”—has to increase, and it has to happen without risk of fires, as seen in some devices. It would also be nice if these batteries didn’t contain so much cobalt, which is found in very few parts of the world and so increases their cost.

“We’re trying to find new solid electrolytes that can conduct ions quickly as [today’s] liquid electrolytes, which are flammable. And we need anodes with a very high energy density,” said Zeeshan Ahmad, CMU.

Graduate students Zeeshan Ahmad and Gregory Houchins, working in the CMU lab of Assistant Professor Venkat Viswanathan, have been pursuing different avenues in their group’s quest to find safer, more powerful solid-state lithium batteries. To do this, they turned to simulations and machine learning on two XSEDE-allocated systems: Bridges at PSC and Comet at SDSC.

How XSEDE Helped:

Houchins worked on the problem of finding cathodes—the positive pole of a battery—that contain lower amounts of expensive cobalt. He wrote software that randomly explores different cathode compositions and tests their efficiencies using the known properties of each simulated material’s components. This would have been a problem on a traditional supercomputer. That’s because the two steps of generating a candidate material and simulating its properties require repeatedly refining the application. A traditional system would have forced him to perform both steps for each material and wait to see if they worked properly—or failed, in which case he had to start again.

“One thing I like about Bridges is the interactive feature … I’ve written a code that will sample the composition space randomly, and from that read-in try and find the best model. It’s all automated, and debugging is difficult to do [in a single submitted batch to a traditional supercomputer]. I’m able to use the interactive mode to quickly debug that code,” said Gregory Houchins, CMU.

Bridges, though, emphasizes interactive access. That feature allowed Houchins to monitor the computation’s progress as it happened, and correct where needed. This helped him to debug quickly, wasting far less time. To date his software has identified over a dozen alternative cathodes predicted to perform as well as the high cobalt-containing materials now used in lithium batteries.

Ahmad, meanwhile, was working on another problem. Batteries consist of a positive cathode, a negative anode, and an electrolyte that allows electricity to flow between them. Lithium batteries are powerful and compact. But their liquid electrolytes are highly flammable. Also, the tendency of dendrites—literally, “little fingers”—to form on the anode and reach toward the cathode further risks fire by causing a short circuit between the anode and cathode. It also limits the lifetime of the battery.

“XSEDE has provided my group with the computational resources needed to tackle some of these very important problems,” said Venkat Viswanathan, CMU.

Ahmad and his collaborators used PSC’s Bridges and SDSC’s Comet to simulate non-flammable solid electrolytes that also wouldn’t allow dendrites to form on the anode. This project used machine learning, a type of artificial intelligence that makes the computer experiment with many random solutions until it finds ones that meet the goal. The scientists screened almost 13,000 candidate solid electrolytes, finding 10 predicted to discourage dendrite formation. They reported these results in the journal ACS Central Science last year.

Both projects need further development—both will screen for more candidates, and the materials identified need to be made and tested in the real world to confirm they have the predicted properties. But they’ve taken the first steps in cracking the fundamental problems that limit battery storage.

Deeper Dive: Machine Learning on Multiple Systems

Zeeshan Ahmad’s project using machine learning to predict whether anode materials would be likely to form dendrites had two major components, each of which required a different computer architecture to run well. The first method, used by Ahmad’s coauthor Tian Xie of Massachusetts Institute of Technology (MIT), was a convolutional neural network. CNNs consist of layers of analysis in which parts of the computation are programmed to behave roughly like nerve cells in the brain’s optical cortex, with each virtual “neuron” connecting with a set of neurons in the layer above and below it.

In the collaborators’ CNN, the neural network focused on two major properties of the materials—the shear modulus, or resistance against a shearing force, and the bulk modulus, or the resistance against compression. These properties determine whether dendrites will form in a battery using that material as the electrolyte. The CNN has good predictive power for these two properties since the training data are accurate and well established from first-principles.

But the candidate materials are anistropic—their properties vary in different directions. Because of this, the shear and bulk modulus are not enough to determine whether a material will form dendrites. To test the different anisotropic properties of each material, Ahmad used different regression techniques suited to the available data. The types of regression that worked best for these computations were gradient boosting and kernel ridge regression.

“We’re running calculations that have to store a lot of data on the quantum mechanical wavefunction of electron in different systems … the stored data increase to the third power of the number of electrons in the system. Bridges’ high memory per core enables us to use just one node; in another system, we would have to use multiple nodes—besides the data transfer reason, in conventional Slurm queuing systems, it would take more time for a multiple-node job to clear the queue,” said Zeeshan Ahmad, CMU.

GPUs, or graphics processing units, tend to make CNN computations run fastest. But the quantum mechanical calculations underlying the computation are extremely memory hungry. At the time, the GPU resources available would have been overcome by a roadblock in accessing the data. So each computation in effect required a different kind of computer.

The scientists ran the CNN on the GPU nodes in SDSC’s Comet, and the regression on the “regular memory” CPU nodes in PSC’s Bridges. The latter had enough memory—128 gigabytes, enough to qualify as large-memory on most HPC systems—to speed the regression and quantum mechanical computations. The two systems helped the scientists to run both computations quickly and efficiently. Since this phase of the research concluded, a new GPU-AI resource has been added to Bridges, including a DGX-2 node that will enable the entire workflow. The MIT group is continuing their research on this resource, which will make future such computations even faster and more efficient.


Source: Ken Chiacchia, Pittsburgh Supercomputing Center

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Qubit Roundup – Quantum Zoo Grows, Rigetti’s QPU Play, Google’s New Algorithm, QuEra’s EC Advance, and More

December 11, 2023

While the IBM Quantum Summit and the QC Ware’s Q2B Silicon Valley conference dominated last week’s news flow, there was no shortage of other quantum news emerging. Here’s brief recap of highlights. Let’s start Read more…

Inside AWS’s Plans to Make S3 Faster and Better

December 10, 2023

As far as big data storage goes, Amazon S3 has won the war. Even among storage vendors whose initials are not A.W.S., S3 is the defacto standard for storing lots of data. But AWS isn’t resting on its laurels with S3, a Read more…

Quantum Market, Though Small, will Grow 22% and Hit $1.5B in 2026

December 7, 2023

Few markets as small as the quantum information sciences market generate as much lively discussion. Hyperion Research pegged the worldwide quantum market at $848 million for 2023 and expects it to reach ~$1.5 billion in Read more…

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed its new Instinct MI300X GPU is the fastest AI chip in the worl Read more…

Finding Opportunity in the High-Growth “AI Market” 

December 6, 2023

 “What’s the size of the AI market?” It’s a totally normal question for anyone to ask me. After all, I’m an analyst, and my company, Intersect360 Research, specializes in scalable, high-performance datacenter Read more…

AWS Solution Channel

Shutterstock 2030529413

Reezocar Rethinks Car Buying Using Computer Vision and ML on AWS

Overview

Every car that finds its way to a landfill marks another dent in the fight for a sustainable future. Reezocar, an online hub for buying and selling used cars, has a mission to change this. Read more…

QCT Solution Channel

QCT and Intel Codeveloped QCT DevCloud Program to Jumpstart HPC and AI Development

Organizations and developers face a variety of issues in developing and testing HPC and AI applications. Challenges they face can range from simply having access to a wide variety of hardware, frameworks, and toolkits to time spent on installation, development, testing, and troubleshooting which can lead to increases in cost. Read more…

Imagine a Beowulf Cluster of SuperNODEs …
(They did)

December 6, 2023

Clustering resources for faster performance is not new. In the early days of clustering, the Beowulf project demonstrated that high performance was achievable from commodity hardware. These days, the "Beowulf cluster mem Read more…

Inside AWS’s Plans to Make S3 Faster and Better

December 10, 2023

As far as big data storage goes, Amazon S3 has won the war. Even among storage vendors whose initials are not A.W.S., S3 is the defacto standard for storing lot Read more…

Quantum Market, Though Small, will Grow 22% and Hit $1.5B in 2026

December 7, 2023

Few markets as small as the quantum information sciences market generate as much lively discussion. Hyperion Research pegged the worldwide quantum market at $84 Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Finding Opportunity in the High-Growth “AI Market” 

December 6, 2023

 “What’s the size of the AI market?” It’s a totally normal question for anyone to ask me. After all, I’m an analyst, and my company, Intersect360 Res Read more…

Imagine a Beowulf Cluster of SuperNODEs …
(They did)

December 6, 2023

Clustering resources for faster performance is not new. In the early days of clustering, the Beowulf project demonstrated that high performance was achievable f Read more…

The IBM-Meta AI Alliance Promotes Safe and Open AI Progress

December 5, 2023

IBM and Meta have co-launched a massive industry-academic-government alliance to shepherd AI development. The new group has united under the AI Alliance banner Read more…

Shutterstock 1336284338

ChatGPT Friendly Programming Languages
(hello-world.llm)

December 4, 2023

 Using OpenAI's ChatGPT to write code is an alluring goal. Describing "what to" solve, but not "how to solve" would be a huge breakthrough in computer programm Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

SC23 Booth Videos

Achronix @ SC23
AMD @ SC23
AWS @ SC23
Altair @ SC23
CoolIT @ SC23
Cornelis Networks @ SC23
CoreHive @ SC23
DDC @ SC23
HPE @ SC23 with Justin Hotard
HPE @ SC23 with Trish Damkroger
Intel @ SC23
Intelligent Light @ SC23
Lenovo @ SC23
Penguin Solutions @ SC23
QCT Intel @ SC23
Tyan AMD @ SC23
Tyan Intel @ SC23
HPCwire LIVE from SC23 Playlist

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire