Collaborative Efforts Produce Clinical Workflows for Fast Genetic Analysis

May 6, 2019

May 6, 2019 — With individualized medicine—one of the holy grails of modern healthcare—diagnosis and treatment of patients would rely in part on each individual’s specific DNA profile, enabling truly personalized care. But in order for genetic information to contribute meaningfully to patient care, DNA testing has to be affordable and efficient. In 2017, the Mayo Clinic Center for Individualized Medicine (CIM) and the University of Illinois at Urbana-Champaign embarked on a two-year Grand Challenge under the auspices of the Mayo Clinic & Illinois Alliance for Technology-Based Healthcare with the goal of making DNA analysis a possibility for every patient. The first aim of the project focused on finding faster methods for clinical analysis of the whole human genome.

The Grand Challenge project, led by Eric Wieben, Ph.D. at Mayo Clinic and Matthew Hudson, Ph.D. at Illinois, tasked Liudmila Mainzer, Ph.D., Technical Program Manager of the Genomics group at Illinois’ National Center for Supercomputing Applications (NCSA), with speeding up clinical testing. Her group conducted analyses to find the fastest tools for genetic variant calling, which analyzes how a specific DNA sample differs from a standard reference. Ultimately, Mayo Clinic decided to adopt a new variant calling software that completes analysis 44 times faster than the traditional industry-standard pipeline—requiring just a few hours to process a whole genome, rather than days. But while faster software makes a significant difference, the bulk of the project lay in the next step for Mainzer’s team: wrapping the newly adopted software tools into a modularized clinical workflow. The resulting “Mayomics” (Mayo + genomics) variant calling workflow will be easy to maintain, update, customize, and run across Mayo Clinic’s many labs and numerous specialized procedures.

Nate Mattson, an IT lead analyst for the Department of IT Executive Administration at Mayo Clinic, coordinated with NCSA and with twelve clinical labs at Mayo Clinic to make sure the finished workflow would meet the needs of hundreds of clinical staff members. Mattson notes that the ability to configure and scale the workflow across multiple procedures and inputs, including whole genome data, is a critical design element—as is automation, which “enables 24/7 processing…without any human intervention” once samples have been sequenced. Modularity—separating tasks into self-contained scripts that can be mixed and matched as needed—is essential on multiple levels, Mainzer adds. “With so many different assays for so many different diseases and conditions, it would be impractical to write, test, and maintain individual workflows for each of them, and keep them in sync and up-to-date as the field evolves. Our design specifically addresses this through modules that can be used in hundreds of workflows, but only need to be updated once when changes occur.”

While the completed workflow satisfied the requirements set forth in the Grand Challenge, Mayo Clinic and Illinois decided to extend their collaborative project in order to add more functionality and configure new workflows, such as variant calling for tumor samples. In the meantime, the first Mayomics workflow has completed a process of rigorous testing by Mayo Clinic’s Software Quality Assurance (SQA) team and is now undergoing a “verification” phase in Mayo Clinic labs prior to official clinical deployment. Clinical work requires robust code and quality control, notes Mainzer, and has to meet exacting external specifications. According to Mattson, “Mayomics will support and exceed all of the auditing requirements set forth by CAP/CLIA and NYS/CLEP,” two sets of national standards for laboratory work.

Mattson and a team comprising Mayo Clinic research IT, clinical IT, and SQA staff work closely with NCSA Genomics to define and clarify requirements for each new request, confirm implementation details, and troubleshoot potential snags. The Mayo Clinic team also develops pieces of the workflow that are highly specific to Mayo Clinic internal systems and procedures. The collaboration works well: “There is value in clinical teams focusing on their own clinical process and medical informatics [while] someone else worries about code organization, workflow development and functionality,” says Mainzer. “These are two different mindsets and it helps when different heads are busy with each one.” Mattson is happy that the Mayomics workflows will enable more efficient, cost-effective analysis. “A diagnosis can be life-changing,” he notes. “Anything we can do to expedite that process without compromising quality is critical.”

This work was a product of the Mayo Clinic & Illinois Alliance for Technology-Based Healthcare. Major funding was provided by the Mayo Clinic Center for Individualized Medicine and the Todd and Karen Wanek Program for Hypoplastic Left Heart Syndrome. The Interdisciplinary Health Sciences Institute, Carl R. Woese Institute for Genomic Biology, and the National Center for Supercomputing Applications also provided support and resources.

ABOUT NCSA

The National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign provides supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, University of Illinois faculty, staff, students, and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one third of the Fortune 50 for more than 30 years by bringing industry, researchers, and students together to solve grand challenges at rapid speed and scale.


Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire