Computational Tools Fuel Reconstruction of New and Improved Bird Family Tree

April 2, 2024

April 2, 2024 — An international team of scientists has built the largest and most detailed bird family tree to date—an intricate chart delineating 93 million years of evolutionary relationships between 363 bird species, representing 92% of all bird families.

The updated bird family tree, published in Nature, delineating 93 million years of evolutionary relationships between 363 bird species. Credit: Jon Fjeldså (drawings) and Josefin Stiller.

The advance was made possible in large part thanks to cutting-edge computational methods developed by engineers at the University of California San Diego, combined with the university’s state-of-the-art supercomputing resources at the San Diego Supercomputer Center. These technologies have enabled researchers to analyze vast amounts of genomic data with high accuracy and speed, laying the groundwork for the construction of the most comprehensive bird family tree ever assembled.

The advance is detailed in two complementary papers published on April 1 in Nature and the Proceedings of the National Academy of Sciences (PNAS). The updated family tree, reported in Nature, revealed patterns in the evolutionary history of birds following the cataclysmic mass extinction event that wiped out the dinosaurs 66 million years ago.

Researchers observed sharp increases in effective population size, substitution rates and relative brain size in early birds, shedding new light on the adaptive mechanisms that drove avian diversification in the aftermath of this pivotal event. In the companion paper published in PNAS, researchers closely examined one of the branches of the new family tree and found that flamingos and doves are more distantly related than previous genome-wide analyses had shown.

The work is part of the Bird 10,000 Genomes (B10K) Project, a multi-institutional effort led by University of Copenhagen, Zhejiang University and UC San Diego that aims to generate draft genome sequences for about 10,500 extant bird species.

“Our goal is to reconstruct the entire evolutionary history of all birds,” said Siavash Mirarab, professor of electrical and computer engineering at the UC San Diego Jacobs School of Engineering, who is a co-senior author on the Nature paper, as well as first and co-corresponding author on the PNAS paper.

Piecing Together the Past

At the heart of these studies lies a suite of algorithms known as ASTRAL, which Mirarab’s lab developed to infer evolutionary relationships with unprecedented scalability, accuracy and speed. By harnessing the power of these algorithms, the team integrated genomic data from over 60,000 genomic regions, providing a robust statistical foundation for their analyses.

The researchers then examined the evolutionary history of individual segments across the genome. From there, they pieced together a mosaic of gene trees, which were then compiled into a comprehensive species tree. This meticulous approach enabled the researchers to construct a new and improved bird family tree that delineates complex branching events with remarkable precision and detail, even in cases of historical uncertainty.

“We found that our method of adding tens of thousands of genes to our analysis was actually necessary to resolve evolutionary relationships between bird species,” said Mirarab. “You really need all that genomic data to recover what happened in this certain period of time 65-67 million years ago with high confidence.”

The team’s ability to conduct these analyses on massive datasets was made possible because Mirarab’s lab designed their computational methods to run on powerful GPU machines. They ran their calculations on the Expanse supercomputer at the San Diego Supercomputer at UC San Diego.

“We were fortunate to have access to such a high-end supercomputer,” said Mirarab. “Without Expanse, we would not have been able to run and rerun our analyses on such large datasets in a reasonable amount of time.”

The researchers also looked at the effects of different genome sampling methods on the accuracy of the tree. They showed that two strategies—sequencing many genes from each species, as well as sequencing many species—combined together are important for reconstructing this evolutionary history.

“Because we used a mixture of both strategies, we could test which approach has stronger impacts on phylogenetic reconstruction,” said Josefin Stiller, professor of biology at the University of Copenhagen and lead author of the Nature paper. “We found that it was more important to sample many genetic sequences from each organism than it was to sample from a broader range of species, although the latter method helped us to date when different groups evolved.”

Correcting the Past

With the aid of their advanced computational methods, the researchers were also able to shed light on something unusual that they had discovered in one of their previous studies: a particular section of one chromosome in the bird genome had remained unchanged for millions of years, void of the expected patterns of genetic recombination.

This anomaly initially led the researchers to incorrectly group flamingos and doves together as evolutionary cousins, for they appeared closely related based on this unchanged section of DNA. That’s because their previous analysis was based on the genomes of 48 bird species. But by repeating their analysis using the genomes of 363 species, a more accurate family tree emerged that moved doves further from flamingos. Moreover, using six high-quality genomes provided by the Vertebrate Genome Project (VGP)—led by co-author Erich Jarvis, a professor of neurobiology at Rockefeller University—Mirarab and colleagues were able to detect and putatively explain this surprising pattern.

“What’s surprising is that this period of suppressed recombination could mislead the analysis,” said Edward Braun, professor of biology at the University of Florida and co-corresponding author of the PNAS paper. “And because it could mislead the analysis, it was actually detectable more than 60 million years in the future. That’s the cool part.”

Next Steps

The impact of this work extends far beyond studying the evolutionary history of birds. The computational methods pioneered by Mirarab’s lab have become one of the standard tools for reconstructing evolutionary trees for a variety of other animals.

Moving forward, the team is continuing their efforts to construct a complete picture of bird evolution. Biologists are working on sequencing the genomes of additional bird species in the hopes of expanding the family tree to include thousands of bird genera. Meanwhile, computational scientists led by Mirarab are refining their algorithms to accommodate even larger datasets to ensure that analyses in future studies are conducted with high speed and accuracy.

Nature paper: “Complexity of avian evolution revealed by family-level genomes.”

PNAS paper: “A region of suppressed recombination misleads neoavian phylogenomics.”


Source: Liezel Labios, UCSD

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire