Computer Science Professor Teng Wins ‘Test of Time’ Award for Influential Paper

July 21, 2021

July 21, 2021 — Shang-Hua Teng, a University Professor and Seely G. Mudd Professor of Computer Science and Mathematics at University of Southern California Viturbi, has been honored with a Symposium on Theory of Computing (STOC) Test of Time Award. Teng, with Daniel A. Spielman of Yale University, received the award from the ACM Special Interest Group on Algorithms and Computation Theory for a paper on smoothed analysis of algorithms originally presented at the STOC conference in 2001.

In the paradigm-shifting paper, “Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time,” Teng and Spielman use the concept of smoothed analysis to give a more realistic understanding of an algorithm’s performance, such as its running time.

The concept helps to explain a long-debated phenomenon: why do some algorithms work better in practice than in theory? Teng and Spielman found that many algorithms, particularly the widely used simplex algorithm for linear programming, work as long as there is noise in the input, because there is usually noise in real-world data.

The study’s findings have been applied to practical algorithms in countless applications, including faster internet communications, deep learning, data mining, differential privacy, game theory, and personalized recommendation systems.

Shang-Hua Teng, a University Professor and Seely G. Mudd Professor of Computer Science and Mathematics, has been honored with a Symposium on Theory of Computing (STOC) Test of Time Award. Teng, with Daniel A. Spielman of Yale University, received the award from the ACM Special Interest Group on Algorithms and Computation Theory for a paper on smoothed analysis of algorithms originally presented at the STOC conference in 2001.

Shang-Hua Teng

In the paradigm-shifting paper, “Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time,” Teng and Spielman use the concept of smoothed analysis to give a more realistic understanding of an algorithm’s performance, such as its running time.

The concept helps to explain a long-debated phenomenon: why do some algorithms work better in practice than in theory? Teng and Spielman found that many algorithms, particularly the widely used simplex algorithm for linear programming, work as long as there is noise in the input, because there is usually noise in real-world data.

The study’s findings have been applied to practical algorithms in countless applications, including faster internet communications, deep learning, data mining, differential privacy, game theory, and personalized recommendation systems.

Over the years, some researchers from operations research, network systems, data mining, and machine learning told me that they used methods inspired by smoothed analysis in their work. Of course, practical algorithmic behaviors are far more complex than what our theory can capture, which is why we and others are continuing to look for ways to develop better theories for practice.

How did you and Professor Spielman meet?

I first met Dan in 1990 when he—then a junior of Yale—gave a seminar at CMU (where I was a PhD student). I was his student host. We then reconnected and became life-long friends at MIT Math department in 1992 when he arrived as a PhD student and I joined as an instructor for the department.

When you were both working on this paper, did you have any idea it would have such an enormous and long-lasting impact?

Twenty years ago, like many in our field, Dan and I recognized the significance of the challenge that motivated our paper: closing the theory-practice gap for algorithms. The simplex method was often mentioned as an example where practical performance defies theoretical prediction. We believed that the theory-practice gap would continue to be a fundamental subject for computing.

We were also encouraged by the responses to our initial work from scientists and researchers, who were closer to practical algorithm design and optimization than we were. Their feedback encouraged us that our steps were meaningful towards capturing practical behaviors of algorithms.

As theoreticians, Dan and I enjoyed the conceptual formulation of smoothed analysis and the technical component of probability, high-dimensional geometry, and mathematical programming in our work. It is exciting to develop a theory that is relevant to some aspect of practice and a great honor indeed to have my work recognized by my peers.

Coming back to the present day, what have you been working on recently? Has the pandemic impacted your research?

During this historical moment, I did find one area of mathematics soothing: recreational mathematics. When I was a student, I used to read Scientific American, and always enjoyed the mathematical puzzles and games in the magazine. When I was teaching at Boston University, one of my PhD students, Kyle Burke, was super passionate and gifted in puzzles and games. He wrote a thesis in 2009 with a cool title: “Science for Fun: New Impartial Board Games.”

Three years ago, he recommended a talented undergraduate, Matt Ferland, to be a PhD student in our department. During the Covid Zoom world, Matt, Kyle and I have been studying several fundamental problems in Combinatorial Game Theory (a more studious name for recreational mathematics), including board games incorporated with quantum-inspired elements.

We also designed new board games based on mathematical and computer science problems. In a recent paper, we solved two long-standing problems in this field that were open since the 1980s and 1990s. These results involve the mathematical extension of the word-chain game we used to play as kids. I have also started playing these games with my 8-year-old daughter. (One of Teng’s games is playable here.)

Click here to learn more.


Source: USC Viturbi

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire