Computing Model Could Lead to Quicker Advancements in Medical Research

November 13, 2013

BLACKSBURG, Va., Nov. 13 — With the promise of personalized and customized medicine, one extremely important tool for its success is the knowledge of a person’s unique genetic profile.

This personalized knowledge of one’s genetic profile has been facilitated by the advent of next-generation sequencing (NGS), where sequencing a genome, such as the human genome, has gone from costing $9 million to a mere $5,700. Now the research problem is no longer how to collect this information, but how to compute and analyze it.

“Overall, DNA sequencers in the life sciences are able to generate a terabyte — or 1 trillion bytes — of data a minute. This accumulation means the size of DNA sequence databases will increase 10-fold every 18 months,” said Wu Feng, a professor with the Department of Computer Science in the College of Engineering at Virginia Tech.

“In contrast, Moore’s Law (named after Intel co-founder Gordon E. Moore) implies that a processor’s capability to compute on such ‘BIG DATA’ increases by only two-fold every 24 months,” added Weng. “Clearly, the rate at which data is being generated is far outstripping a processor’s capability to compute on it. Hence the need exists for accessible large-scale computing with multiple processors … though the rate at which the number of processors needs to increase is doing so at an exponential rate.”

For the past two years, Feng has led a research team that has now created a new generation of efficient data management and analysis software for large-scale, data-intensive scientific applications in the cloud.

Cloud computing is a term coined by individuals in the computing field that in general describes a large number of connected computers located all over the world that can simultaneously run a program at a large scale. Feng announced his work in October at the O’Reilly Strata Conference + Hadoop World in New York City.

By background to Feng’s announcement, one needs to go back more than three years. In April 2010, the National Science Foundation teamed with Microsoft on a collaborative cloud computing agreement. One year later, they decided to fund 13 research projects to help researchers quickly integrate cloud technology into their research.

Feng was selected to lead one of these teams. His target was to develop an on-demand, cloud-computing model, using the Microsoft Azure cloud. It then evolved naturally to make use of the Microsoft’s Hadoop-based Azure HDInsight Service.

“Our goal was to keep up with the data deluge in the DNA sequencing space. Our result is that we are now analyzing data faster, and we are also analyzing it more intelligently,” Feng said.

With this analysis, and the ability of researchers from all over the globe to see the same sets of data, collaborative work is facilitated on a 24/7 global perspective. “This cooperative cloud computing solution allows life scientists and their institutions easy sharing of public data sets and helps facilitate large-scale collaborative research,” Feng added.

Think of the advantages of oncologists from Sloan Kettering to the German Cancer Research Center would have by maintaining simultaneous and instantaneous access to each other’s data.

Specifically, Feng and his team, Nabeel Mohamed of Chennai, Tamilnadu, India, and a master’s student, and Heshan Lin, a research scientist with Virginia Tech’s Department of Computer Science, developed two software-based research artifacts: SeqInCloud and CloudFlow.  They are members of the Synergy Lab, directed by Feng.

The first, an abbreviation for the words “sequencing in the clouds,” combined with the Microsoft cloud computing platform and infrastructure, provides a portable cloud solution for next-generation sequence analysis.  This resource optimizes data management, such as data partitioning and data transfer, to deliver better performance and resource use of cloud resources.

The second artifact, CloudFlow, is his team’s scaffolding for managing workflows, such as SeqInCloud.  A researcher can install this software to “allow the construction of pipelines that simultaneously use the client and the cloud resources for running the pipeline and automating data transfers,” Feng said.

“If this DNA data and associated resources are not shared, then life scientists and their institutions need to find the millions of dollars to establish and/or maintain their own supercomputing centers,” he added.

Feng knows about high-performance computing. In 2011, he was the main architect of a supercomputer called HokieSpeed.

That year, HokieSpeed settled in at No. 96 on the Top500 List, the industry-standard ranking of the world’s 500 fastest supercomputers. Its fame, however, came because of the machine’s energy efficiency, recorded as the highest-ranked commodity supercomputer in the United States in 2011 on the Green500 List, a compilation of supercomputers that excel at using less energy to do more.

Economics also was key in Feng’s supercomputing success. HokieSpeed was built for $1.4 million, a small fraction — one-tenth of a percent of the cost — of the Top500’s No. 1 supercomputer at the time, the K Computer from Japan. The majority of funding for HokieSpeed came from a $2 million National Science Foundation Major Research Instrumentation grant.

Feng also has been working in the biotechnology arena for quite some time. One of his key awards was the NVIDIA Foundation’s first worldwide research award for computing the cure for cancer.

This grant, also awarded in 2011, enabled Feng, the principal investigator, and his colleagues to create a client-based framework for faster genome analysis to make it easier for genomics researchers to identify mutations that are relevant to cancer.

Likewise, the more general SeqInCloud and CloudFlow artifacts seek to achieve the same type of advances and more, but via a cloud-based framework.

More recently, Feng was a member of a team that secured a $2 million grant from the National Science Foundation and the National Institutes of Health to develop core techniques that would enable researchers to innovatively leverage high-performance computing to analyze the data deluge of high-throughput DNA sequencing, also known as next-generation sequencing.

The College of Engineering at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college’s 6,000 undergraduates benefit from an innovative curriculum that provides a “hands-on, minds-on” approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

—–

Source: Virginia Tech

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and received a patent for a "processor design, which allows rep Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

  • arrow
  • Click Here for More Headlines
  • arrow
Share This