Computing Model Could Lead to Quicker Advancements in Medical Research

November 13, 2013

BLACKSBURG, Va., Nov. 13 — With the promise of personalized and customized medicine, one extremely important tool for its success is the knowledge of a person’s unique genetic profile.

This personalized knowledge of one’s genetic profile has been facilitated by the advent of next-generation sequencing (NGS), where sequencing a genome, such as the human genome, has gone from costing $9 million to a mere $5,700. Now the research problem is no longer how to collect this information, but how to compute and analyze it.

“Overall, DNA sequencers in the life sciences are able to generate a terabyte — or 1 trillion bytes — of data a minute. This accumulation means the size of DNA sequence databases will increase 10-fold every 18 months,” said Wu Feng, a professor with the Department of Computer Science in the College of Engineering at Virginia Tech.

“In contrast, Moore’s Law (named after Intel co-founder Gordon E. Moore) implies that a processor’s capability to compute on such ‘BIG DATA’ increases by only two-fold every 24 months,” added Weng. “Clearly, the rate at which data is being generated is far outstripping a processor’s capability to compute on it. Hence the need exists for accessible large-scale computing with multiple processors … though the rate at which the number of processors needs to increase is doing so at an exponential rate.”

For the past two years, Feng has led a research team that has now created a new generation of efficient data management and analysis software for large-scale, data-intensive scientific applications in the cloud.

Cloud computing is a term coined by individuals in the computing field that in general describes a large number of connected computers located all over the world that can simultaneously run a program at a large scale. Feng announced his work in October at the O’Reilly Strata Conference + Hadoop World in New York City.

By background to Feng’s announcement, one needs to go back more than three years. In April 2010, the National Science Foundation teamed with Microsoft on a collaborative cloud computing agreement. One year later, they decided to fund 13 research projects to help researchers quickly integrate cloud technology into their research.

Feng was selected to lead one of these teams. His target was to develop an on-demand, cloud-computing model, using the Microsoft Azure cloud. It then evolved naturally to make use of the Microsoft’s Hadoop-based Azure HDInsight Service.

“Our goal was to keep up with the data deluge in the DNA sequencing space. Our result is that we are now analyzing data faster, and we are also analyzing it more intelligently,” Feng said.

With this analysis, and the ability of researchers from all over the globe to see the same sets of data, collaborative work is facilitated on a 24/7 global perspective. “This cooperative cloud computing solution allows life scientists and their institutions easy sharing of public data sets and helps facilitate large-scale collaborative research,” Feng added.

Think of the advantages of oncologists from Sloan Kettering to the German Cancer Research Center would have by maintaining simultaneous and instantaneous access to each other’s data.

Specifically, Feng and his team, Nabeel Mohamed of Chennai, Tamilnadu, India, and a master’s student, and Heshan Lin, a research scientist with Virginia Tech’s Department of Computer Science, developed two software-based research artifacts: SeqInCloud and CloudFlow.  They are members of the Synergy Lab, directed by Feng.

The first, an abbreviation for the words “sequencing in the clouds,” combined with the Microsoft cloud computing platform and infrastructure, provides a portable cloud solution for next-generation sequence analysis.  This resource optimizes data management, such as data partitioning and data transfer, to deliver better performance and resource use of cloud resources.

The second artifact, CloudFlow, is his team’s scaffolding for managing workflows, such as SeqInCloud.  A researcher can install this software to “allow the construction of pipelines that simultaneously use the client and the cloud resources for running the pipeline and automating data transfers,” Feng said.

“If this DNA data and associated resources are not shared, then life scientists and their institutions need to find the millions of dollars to establish and/or maintain their own supercomputing centers,” he added.

Feng knows about high-performance computing. In 2011, he was the main architect of a supercomputer called HokieSpeed.

That year, HokieSpeed settled in at No. 96 on the Top500 List, the industry-standard ranking of the world’s 500 fastest supercomputers. Its fame, however, came because of the machine’s energy efficiency, recorded as the highest-ranked commodity supercomputer in the United States in 2011 on the Green500 List, a compilation of supercomputers that excel at using less energy to do more.

Economics also was key in Feng’s supercomputing success. HokieSpeed was built for $1.4 million, a small fraction — one-tenth of a percent of the cost — of the Top500’s No. 1 supercomputer at the time, the K Computer from Japan. The majority of funding for HokieSpeed came from a $2 million National Science Foundation Major Research Instrumentation grant.

Feng also has been working in the biotechnology arena for quite some time. One of his key awards was the NVIDIA Foundation’s first worldwide research award for computing the cure for cancer.

This grant, also awarded in 2011, enabled Feng, the principal investigator, and his colleagues to create a client-based framework for faster genome analysis to make it easier for genomics researchers to identify mutations that are relevant to cancer.

Likewise, the more general SeqInCloud and CloudFlow artifacts seek to achieve the same type of advances and more, but via a cloud-based framework.

More recently, Feng was a member of a team that secured a $2 million grant from the National Science Foundation and the National Institutes of Health to develop core techniques that would enable researchers to innovatively leverage high-performance computing to analyze the data deluge of high-throughput DNA sequencing, also known as next-generation sequencing.

The College of Engineering at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college’s 6,000 undergraduates benefit from an innovative curriculum that provides a “hands-on, minds-on” approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

—–

Source: Virginia Tech

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conferen Read more…

By Tiffany Trader

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

Need Data Science CyberInfrastructure? Check with RENCI’s xDCI Concierge

September 6, 2017

For about a year the Renaissance Computing Institute (RENCI) has been assembling best practices and open source components around data-driven scientific researc Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This