Cornell Leads New NSF Federated Cloud Project

November 3, 2015

ITHACA, N.Y., Nov. 3 — Cornell University will lead a five-year, $5 million project sponsored by the National Science Foundation (NSF) to build a federated cloud comprised of data infrastructure building blocks (DIBBs) designed to support scientists and engineers requiring flexible workflows and analysis tools for large-scale data sets, known as the Aristotle Cloud Federation.

The federated cloud will be deployed at Cornell University (CU), the University at Buffalo (UB), and the University of California, Santa Barbara (UCSB) and shared by seven science teams with over forty global collaborators.

David Lifka, Director of the Cornell University Center for Advanced Computing (CAC) will lead the project with colleagues Tom Furlani, Director of the UB Center for Computational Research, and Rich Wolski, Professor of Computer Science at UCSB.

Initial users of the cloud federation—earth and atmospheric sciences, finance, chemistry, astronomy, civil engineering, genomics, and food science—were selected based on the diversity of their data analysis requirements and cloud usage modalities. Their use cases will demonstrate the value of sharing resources and data across institutional boundaries. The overarching goal is optimizing “time to science”—the actual time it takes a researcher to obtain their scientific results. The elasticity provided by sharing resources means researchers don’t have to wait for local resources to become available to get their science started.

Metrics provided by UB’s XDMoD (XD Metrics on Demand) and UCSB’s QBETS (Queue Bounds Estimation Time Series) will enable researchers and administrators to make informed decisions about when to use federated resources outside their institutions.

“Cloud-based systems are rapidly becoming a key component in the support of research programs in academe and industry. By adding cloud metrics to XDMoD, researchers and senior leaders will be able to obtain detailed operational metrics of cloud systems in order to improve the efficiency of jobs run on the cloud, as well as measure overall cloud performance,” said Furlani. “Efficient use of federated clouds requires the ability to make predictions about where a workload will run best,” added Wolski. “Using XDMoD data and cloud-embedded performance monitors, QBETS will make it possible to predict the effects of federated work-sharing policies on user experience, both in the DIBBs cloud and in the Amazon Web Services (AWS) Cloud.”

“The goal of the Aristotle Cloud Federation is to develop a federated cloud model that encourages and rewards institutions for sharing large-scale data analysis resources that can be expanded internally with common, incremental building blocks and externally through meaningful collaborations with other institutions, commercial clouds, and NSF cloud resources,” said project PI Lifka. The project name—Aristotle—was chosen because Aristotle’s concept “the whole is greater than the sum of its parts” reflects the multi-institutional synergy and collaborations that the federation aspires to create.

The project will implement a new allocations and accounting model that will allow institutional administrators to track utilization across federated sites and use this data as an exchange mechanism between partner sites. This data will demonstrate the potential benefits of sharing institutional resources such as deploying local infrastructure that is right-sized for steady state usage rather than irregular peak loads.

Federation components, documentation, and best practices developed in this grant will be provided to the national community with the information necessary to create customized Virtual Machine instances, leverage resources at federated sites, burst to AWS, access, move, and share large-scale data, and deploy new cloud federations.

Cloud provider AWS will collaborate with the federation developers and scientists. “We are excited to work with the Aristotle team to provide cost-effective and scalable infrastructure that helps accelerate the time to science,” said Jamie Kinney, Senior Manager Scientific Computing, Amazon Web Services, Inc.

Scientists will use the federation to solve data challenges. “We plan to use Aristotle to exploit cloud-based parallelism and perform asynchronous, interactive analysis of complex environmental models that generate thousands of data files” said Patrick Reed, a Cornell University Civil and Environmental Engineering researcher who collaborates with University of North Carolina, Chapel Hill and Penn State engineers. “We will use Aristotle to enhance our decision management tools so that we can solve problems of increasing complexity such as helping cities to better manage their drought risks.”

According to Varun Chandola, a Computer Science and Engineering researcher at the UB, massive troves of geospatial data such as earth observation and climate simulations are scattered around the world within the data archives of researchers, government, and the private sector. Chandola is working with colleagues at NASA Ames, Oak Ridge National Laboratory, and several universities on streamlining the integrated visualization and analysis of geo-data. “We plan to use Aristotle to develop a cloud-based solution that allows researchers to seamlessly integrate heterogeneous geo-data from a variety of sources into a cloud-based analysis engine,” Chandola said.

“Research scientists and their collaborators are gathering sensor data and scientific images to optimize food productivity and security,” said Kate McCurdy, Director of the Sedgwick Reserve, a 5,896 acre nature reserve in California. “The scientists wish to combine this data with images taken by the general public and stored in commercial clouds,” she explained. “By combining campus clouds and commercial cloud services, the federated cloud approach implemented by Aristotle will provide the data structure we need.”

“This award continues NSF’s multi-year strategy to stimulate exploration of scalable and sustainable data infrastructure models that facilitate collaborative research across disciplines and institutions,” said Amy Walton, Program Director, Advanced Cyberinfrastructure Division, NSF. “By experimenting with cloud usage metrics, collaborating with a commercial cloud vendor, and exploring pricing/trading allocation mechanisms, the project will provide valuable information about how the innovations work in a range of situations, and how this ‘market approach’ integrates within the larger research ecosystem.”

“Sharing cloud computing and storage assets between institutions and bursting to commercial clouds when appropriate is definitely a model worth a serious trial,” said Robert A. Buhrman, Senior Vice Provost for Research at Cornell. “Creating federated clouds has the potential to increase multi-institutional and multi-disciplinary research collaborations, enhance data-driven insights, and reduce capital expenditures.”

Source: Cornell University Center for Advanced Computing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Introduces Larger-Than-Ever IPU-Based Pods

October 22, 2021

Graphcore and its “Intelligent Processing Units” (IPUs) emerged from stealth in 2016 and launched its second-generation IPU in 2020. While the company has also launched its IPUs in a variety of form factors over the Read more…

Quantum Chemistry Project to Be Among the First on EuroHPC’s LUMI System

October 22, 2021

Finland’s CSC has just installed the first module of LUMI, a 550-peak petaflops system supported by the European Union’s EuroHPC Joint Undertaking. While LUMI -- pictured in the header -- isn’t slated to complete i Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat for that approach), announced it was expanding into gate-based Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the power of Fugaku, the current top-ranked supercomputer in the wor Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 537899029

Running GROMACS on GPU instances

Comparing the performance of real applications across different Amazon Elastic Compute Cloud (Amazon EC2) instance types is the best way we’ve found for finding optimal configurations for HPC applications here at AWS. Read more…

Faster Optical Switch that Operates at ‘Room Temp’ Developed by IBM, Skolkovo Researchers

October 19, 2021

Optical switching technology holds great promise for many applications but hot operating temperatures have been a key obstacle slowing progress. Now, a new optical switching device that can operate at room temperatures a Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the powe Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire