Cosmos Code Helps Probe Space Oddities

November 7, 2017

Nov. 7, 2017 — Black holes make for a great space mystery. They’re so massive that nothing, not even light, can escape a black hole once it gets close enough. A great mystery for scientists is that there’s evidence of powerful jets of electrons and protons that shoot out of the top and bottom of some black holes. Yet no one knows how these jets form.

Computer code called Cosmos now fuels supercomputer simulations of black hole jets and is starting to reveal the mysteries of black holes and other space oddities.

Cosmos code simulates wide-ranging astrophysical phenomena. Shown here is a multi-physics simulation of an Active Galactic Nucleus (AGN) jet colliding with and triggering star formation within an intergalactic gas cloud (red indicates jet material, blue is neutral Hydrogen [H I] gas, and green is cold, molecular Hydrogen [H_2] gas. (Chris Fragile)
“Cosmos, the root of the name, came from the fact that the code was originally designed to do cosmology. It’s morphed into doing a broad range of astrophysics,” explained Chris Fragile, a professor in the Physics and Astronomy Department of the College of Charleston. Fragile helped develop the Cosmos code in 2005 while working as a post-doctoral researcher at the Lawrence Livermore National Laboratory (LLNL), along with Steven Murray (LLNL) and Peter Anninos (LLNL).

Fragile pointed out that Cosmos provides astrophysicists an advantage because it has stayed at the forefront of general relativistic magnetohydrodynamics (MHD). MHD simulations, the magnetism of electrically conducting fluids such as black hole jets, add a layer of understanding but are notoriously difficult for even the fastest supercomputers.

“The other area that Cosmos has always had some advantage in as well is that it has a lot of physics packages in it,” continued Fragile. “This was Peter Anninos’ initial motivation, in that he wanted one computational tool where he could put in everything he had worked on over the years.” Fragile listed some of the packages that include chemistry, nuclear burning, Newtonian gravity, relativistic gravity, and even radiation and radiative cooling. “It’s a fairly unique combination,” Fragile said.

The current iteration of the code is CosmosDG, which utilizes discontinuous Gelarkin methods. “You take the physical domain that you want to simulate,” explained Fragile, “and you break it up into a bunch of little, tiny computational cells, or zones. You’re basically solving the equations of fluid dynamics in each of those zones.” CosmosDG has allowed much higher order of accuracy than ever before, according to results published in the Astrophysical Journal, August 2017.

“We were able to demonstrate that we achieved many orders of magnitude more accurate solutions in that same number of computational zones,” stated Fragile. “So, particularly in scenarios where you need very accurate solutions, CosmosDG may be a way to get that with less computational expense than we would have had to use with previous methods.”

XSEDE ECSS Helps Cosmos Develop

Since 2008, the Texas Advanced Computing Center (TACC) has provided computational resources for the development of the Cosmos code—about 6.5 million supercomputer core hours on the Ranger system and 3.6 million core hours on the Stampede system. XSEDE, the eXtreme Science and Engineering Discovery Environment funded by the National Science Foundation, awarded Fragile’s group with the allocation.

“I can’t praise enough how meaningful the XSEDE resources are,” Fragile said. “The science that I do wouldn’t be possible without resources like that. That’s a scale of resources that certainly a small institution like mine could never support. The fact that we have these national-level resources enables a huge amount of science that just wouldn’t get done otherwise.”

And the fact is that busy scientists can sometimes use a hand with their code. In addition to access, XSEDE also provides a pool of experts through the Extended Collaborative Support Services (ECSS) effort to help researchers take full advantage of some of the world’s most powerful supercomputers.

Fragile has recently enlisted the help of XSEDE ECSS to optimize the CosmosDG code for Stampede2, a supercomputer capable of 18 petaflops and the flagship of TACC at The University of Texas at Austin. Stampede2 features 4,200 Knights Landing (KNL) nodes and 1,736 Intel Xeon Skylake nodes.

Taking Advantage of Knights Landing and Stampede2

The manycore architecture of KNL presents new challenges for researchers trying to get the best compute performance, according to Damon McDougall, a research associate at TACC and also at the Institute for Computational Engineering and Sciences, UT Austin. Each Stampede2 KNL node has 68 cores, with four hardware threads per core. That’s a lot of moving pieces to coordinate.

“This is a computer chip that has lots of cores compared to some of the other chips one might have interacted with on other systems,” McDougall explained. “More attention needs to be paid to the design of software to run effectively on those types of chips.”

Through ECSS, McDougall has helped Fragile optimize CosmosDG for Stampede2. “We promote a certain type of parallelism, called hybrid parallelism, where you might mix Message Passing Interface (MPI) protocols, which is a way of passing messages between compute nodes, and OpenMP, which is a way of communicating on a single compute node,” McDougall said. “Mixing those two parallel paradigms is something that we encourage for these types of architectures. That’s the type of advice we can help give and help scientists to implement on Stampede2 though the ECSS program.”

“By reducing how much communication you need to do,” Fragile said, “that’s one of the ideas of where the gains are going to come from on Stampede2. But it does mean a bit of work for legacy codes like ours that were not built to use OpenMP. We’re having to retrofit our code to include some OpenMP calls. That’s one of the things Damon has been helping us try to make this transition as smoothly as possible.”

McDougall described the ECSS work so far with CosmosDG as “very nascent and ongoing,” with much initial work sleuthing memory allocation ‘hot spots’ where the code slows down.

“One of the things that Damon McDougall has really been helpful with is helping us make the codes more efficient and helping us use the XSEDE resources more efficiently so that we can do even more science with the level of resources that we’re being provided,” Fragile added.

Black Hole Wobble

Some of the science Fragile and colleagues have already done with the help of the Cosmos code has helped study accretion, the fall of molecular gases, and space debris into a black hole. Black hole accretion powers its jets. “One of the things I guess I’m most famous for is studying accretion disks where the disk is tilted,” explained Fragile.

Black holes spin. And so do the disk of gasses and debris that surrounds it and falls in. However, they spin on different axes of rotation. “We were the first people to study cases where the axis of rotation of the disk is not aligned with the axis of rotation of the black hole,” Fragile said. General relativity shows that rotating bodies can exert a torque on other rotating bodies that aren’t aligned with it.

Fragile’s simulations showed the black hole wobbles, a movement called precession, from the torque of the spinning accretion disk. “The really interesting thing is that over the last five years or so, observers—the people who actually use telescopes to study black hole systems—have seen evidence that the disks might actually be doing this precession that we first showed in our simulations,” Fragile said.

Fragile and colleagues use the Cosmos code to study other space oddities such as tidal disruption events, which happen when a molecular cloud or star passes close enough that a black hole shreds it. Other examples include Minkowski’s Object, where Cosmos simulations support observations that a black hole jet collides with a molecular cloud to trigger star formation.

Golden Age of Astronomy and Computing

“We’re living in a golden age of astronomy,” Fragile said, referring to the wealth of knowledge generated from space telescopes like Hubble to the upcoming James Webb Space Telescope, to land-based telescopes such as Keck, and more.

Computing has helped support the success of astronomy, Fragile said. “What we do in modern-day astronomy couldn’t be done without computers,” he concluded. “The simulations that I do are two-fold. They’re to help us better understand the complex physics behind astrophysical phenomena. But they’re also to help us interpret and predict observations that either have been, can be, or will be made in astronomy.”


Source: Texas Advanced Computing Center

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This