Cray Adds Arm Processors with Complete Software Stack to the Cray XC50 Supercomputer

November 13, 2017

SEATTLE, Nov. 13, 2017 — Global supercomputer leader Cray Inc. (Nasdaq:CRAY) today announced the Company is creating the world’s first production-ready, Arm®-based supercomputer with the addition of Cavium ThunderX2 processors, based on 64-bit Armv8-A architecture, to the Cray XC50 supercomputer. Cray customers will have a complete Arm-based supercomputer that features a full software environment, including the Cray Linux Environment, the Cray Programming Environment, and Arm-optimized compilers, libraries, and tools for running today’s supercomputing workloads.

Cray enhanced its compiler and programming environment to achieve more performance out of the Cavium ThunderX2 processors. In a head-to-head comparison of 135 standard HPC benchmarks, Cray’s compiler showed performance advantages in two-thirds of the benchmarks, and showed significant (more than 20 percent) performance advantage in one-third of the tests, versus other public domain Armv8 compilers from LLVM and GNU.

“With the integration of Arm processors into our flagship Cray XC50 systems, we will offer our customers the world’s most flexible supercomputers,” said Fred Kohout, Cray’s senior vice president of products and chief marketing officer. “Adding Arm processors complements our system’s ability to support a variety of host processors, and gives customers a unique, leadership-class supercomputer for compute, simulation, big data analytics, and deep learning. Our software engineers built the industry’s best Arm toolset to maximize customer value from the system, which is representative of the R&D work we do every day to build on our leadership position in supercomputing.”

Cray is currently working with multiple supercomputing centers on the development of Arm-based supercomputing systems, including various labs in the United States Department of Energy and the GW4 alliance – a coalition of four leading, research-intensive universities in the UK. Through an alliance with Cray and the Met Office in the UK, GW4 is designing and building “Isambard,” an Arm-based Cray XC50 supercomputer.

“The GW4 Isambard project aims to deliver the world’s first Arm-based, production-quality HPC service,” said Professor Simon McIntosh-Smith from the University of Bristol. “Ease of use, robustness, and performance, are all critical for a production service, and our early experiences with Cray’s ThunderX2 systems and end-to-end Arm software environment are very promising. All of the real scientific codes we’ve tried so far have worked out of the box, and we’re also seeing performance competitive with the best in class. Having access to Cray’s optimized HPC software stack of compilers and libraries in addition to all of the open-source tools has been a real advantage.”

“The unmatched scalability and flexibility of the Arm architecture, combined with our upcoming SVE technology is the most efficient path to achieving the vision of exascale,” said Drew Henry, senior vice president and general manager, Infrastructure Line of Business, Arm. “The Cray XC50 takes us one step closer to exascale by fueling a new era of innovation with the HPC community, while expanding the HPC footprint of the Arm ecosystem, the world’s largest and most open for silicon designers, software developers, and tools providers.”

“Cavium has developed a leadership position in the Arm server market, and has collaborated with Cray for the last three years, starting with our first-generation ThunderX Arm processor, which was used to optimize the Cray compiler, libraries, and tool chain for the Armv8-A architecture,” said Gopal Hegde, VP/GM, Data Center Processor Group at Cavium. “ThunderX2 combines our second-generation, fully out of order high-performance Armv8-A custom cores with best-in-class memory bandwidth and rich IO configurations to provide a highly-differentiated processor for HPC applications. ThunderX2 based blades in Cray’s flagship XC50 systems, integrated with the Aries network and Cray’s optimized software stack, enables an ideal supercomputing platform for a variety of high performance compute workloads.”

Cray XC50 supercomputers with the Cavium ThunderX2 processors will be available in both liquid-cooled cabinets and air-cooled cabinets to address a variety of datacenter needs. Compute blades can be mixed and matched with Intel® Xeon® Scalable processors, Intel Xeon Phi™ processors, and NVIDIA® Tesla® GPU accelerators. The Arm-based Cray XC50 supercomputers will be available in the second quarter of 2018.

About the Cray XC50 Supercomputer
The Cray XC50 series of supercomputers are designed to handle the most challenging workloads requiring sustained multi-petaflop performance. They incorporate the Aries high performance network interconnect for low latency and scalable global bandwidth, as well as the latest 64-bit Cavium ThunderX2 processors, Intel Xeon Scalable processors, Intel Xeon Phi processors, and NVIDIA Tesla GPU accelerators. With a top peak performance of 500 petaflops, and one petaflops in a single cabinet, the Cray XC50 supercomputer delivers on Cray’s commitment to performance supercomputing with an architecture and software environment that provides extreme scalability and sustained performance.

For more information on the Cray XC supercomputers, please visit the Cray website at www.cray.com.

About Cray Inc.

Global supercomputing leader Cray Inc. (Nasdaq:CRAY) provides innovative systems and solutions enabling scientists and engineers in industry, academia and government to meet existing and future simulation and analytics challenges. Leveraging more than 45 years of experience in developing and servicing the world’s most advanced supercomputers, Cray offers a comprehensive portfolio of supercomputers and big data storage and analytics solutions delivering unrivaled performance, efficiency and scalability. Cray’s Adaptive Supercomputing vision is focused on delivering innovative next-generation products that integrate diverse processing technologies into a unified architecture, allowing customers to meet the market’s continued demand for realized performance. Go to www.cray.com for more information.


Source: Cray Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This