Cray Adds Arm Processors with Complete Software Stack to the Cray XC50 Supercomputer

November 13, 2017

SEATTLE, Nov. 13, 2017 — Global supercomputer leader Cray Inc. (Nasdaq:CRAY) today announced the Company is creating the world’s first production-ready, Arm®-based supercomputer with the addition of Cavium ThunderX2 processors, based on 64-bit Armv8-A architecture, to the Cray XC50 supercomputer. Cray customers will have a complete Arm-based supercomputer that features a full software environment, including the Cray Linux Environment, the Cray Programming Environment, and Arm-optimized compilers, libraries, and tools for running today’s supercomputing workloads.

Cray enhanced its compiler and programming environment to achieve more performance out of the Cavium ThunderX2 processors. In a head-to-head comparison of 135 standard HPC benchmarks, Cray’s compiler showed performance advantages in two-thirds of the benchmarks, and showed significant (more than 20 percent) performance advantage in one-third of the tests, versus other public domain Armv8 compilers from LLVM and GNU.

“With the integration of Arm processors into our flagship Cray XC50 systems, we will offer our customers the world’s most flexible supercomputers,” said Fred Kohout, Cray’s senior vice president of products and chief marketing officer. “Adding Arm processors complements our system’s ability to support a variety of host processors, and gives customers a unique, leadership-class supercomputer for compute, simulation, big data analytics, and deep learning. Our software engineers built the industry’s best Arm toolset to maximize customer value from the system, which is representative of the R&D work we do every day to build on our leadership position in supercomputing.”

Cray is currently working with multiple supercomputing centers on the development of Arm-based supercomputing systems, including various labs in the United States Department of Energy and the GW4 alliance – a coalition of four leading, research-intensive universities in the UK. Through an alliance with Cray and the Met Office in the UK, GW4 is designing and building “Isambard,” an Arm-based Cray XC50 supercomputer.

“The GW4 Isambard project aims to deliver the world’s first Arm-based, production-quality HPC service,” said Professor Simon McIntosh-Smith from the University of Bristol. “Ease of use, robustness, and performance, are all critical for a production service, and our early experiences with Cray’s ThunderX2 systems and end-to-end Arm software environment are very promising. All of the real scientific codes we’ve tried so far have worked out of the box, and we’re also seeing performance competitive with the best in class. Having access to Cray’s optimized HPC software stack of compilers and libraries in addition to all of the open-source tools has been a real advantage.”

“The unmatched scalability and flexibility of the Arm architecture, combined with our upcoming SVE technology is the most efficient path to achieving the vision of exascale,” said Drew Henry, senior vice president and general manager, Infrastructure Line of Business, Arm. “The Cray XC50 takes us one step closer to exascale by fueling a new era of innovation with the HPC community, while expanding the HPC footprint of the Arm ecosystem, the world’s largest and most open for silicon designers, software developers, and tools providers.”

“Cavium has developed a leadership position in the Arm server market, and has collaborated with Cray for the last three years, starting with our first-generation ThunderX Arm processor, which was used to optimize the Cray compiler, libraries, and tool chain for the Armv8-A architecture,” said Gopal Hegde, VP/GM, Data Center Processor Group at Cavium. “ThunderX2 combines our second-generation, fully out of order high-performance Armv8-A custom cores with best-in-class memory bandwidth and rich IO configurations to provide a highly-differentiated processor for HPC applications. ThunderX2 based blades in Cray’s flagship XC50 systems, integrated with the Aries network and Cray’s optimized software stack, enables an ideal supercomputing platform for a variety of high performance compute workloads.”

Cray XC50 supercomputers with the Cavium ThunderX2 processors will be available in both liquid-cooled cabinets and air-cooled cabinets to address a variety of datacenter needs. Compute blades can be mixed and matched with Intel® Xeon® Scalable processors, Intel Xeon Phi™ processors, and NVIDIA® Tesla® GPU accelerators. The Arm-based Cray XC50 supercomputers will be available in the second quarter of 2018.

About the Cray XC50 Supercomputer
The Cray XC50 series of supercomputers are designed to handle the most challenging workloads requiring sustained multi-petaflop performance. They incorporate the Aries high performance network interconnect for low latency and scalable global bandwidth, as well as the latest 64-bit Cavium ThunderX2 processors, Intel Xeon Scalable processors, Intel Xeon Phi processors, and NVIDIA Tesla GPU accelerators. With a top peak performance of 500 petaflops, and one petaflops in a single cabinet, the Cray XC50 supercomputer delivers on Cray’s commitment to performance supercomputing with an architecture and software environment that provides extreme scalability and sustained performance.

For more information on the Cray XC supercomputers, please visit the Cray website at www.cray.com.

About Cray Inc.

Global supercomputing leader Cray Inc. (Nasdaq:CRAY) provides innovative systems and solutions enabling scientists and engineers in industry, academia and government to meet existing and future simulation and analytics challenges. Leveraging more than 45 years of experience in developing and servicing the world’s most advanced supercomputers, Cray offers a comprehensive portfolio of supercomputers and big data storage and analytics solutions delivering unrivaled performance, efficiency and scalability. Cray’s Adaptive Supercomputing vision is focused on delivering innovative next-generation products that integrate diverse processing technologies into a unified architecture, allowing customers to meet the market’s continued demand for realized performance. Go to www.cray.com for more information.


Source: Cray Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This