Cray, AMPLab, NERSC Collaboration Targets Spark Performance on HPC Platforms

November 4, 2015

Nov. 4 — As data-centric workloads become increasingly common in scientific and industrial applications, a pressing concern is how to design large-scale data analytics stacks that simplify analysis of the resulting data. A new collaboration between Cray, researchers at UC Berkeley’s AMPLab and Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC) is working to address this issue.

The need to build and study increasingly detailed models of physical phenomena has benefited from advancement in high performance computing (HPC) for decades. It has also resulted in an exponential increase in data, from simulations as well as real-world experiments. This has fundamental implications for HPC systems design, such as the need for improved algorithmic methods and the ability to exploit deeper memory/storage hierarchies and efficient methods for data interchange and representation in a scientific workflow. The modern HPC platform has to be equally capable of handling both traditional HPC workloads and the emerging class of data-centric workloads and analytics motifs.

In the commercial sector, these challenges have fueled the development of frameworks such as Hadoop and Spark and a rapidly growing body of open-source software for common data analysis and machine learning problems. These technologies are typically designed for and implemented in distributed data centers consisting of a large number of commodity processing nodes, with an emphasis on scalability, fault tolerance and productivity. In contrast, HPC environments are focused primarily on no-compromise performance of carefully optimized codes at extreme scale.

Given this scenario, how can we the derive the greatest value from adapting productivity-oriented analytics tools such as Spark to HPC environments? And how can a framework like Spark better exploit supercomputing technologies like advanced interconnects and memory hierarchies to improve performance at scale, without losing its productivity benefits?

To address these questions researchers from Cray, AMPLab and NERSC are actively examining research and performance issues in getting Spark up and running on HPC environments such as NERSC’s Edison (Cray XC30) and Cori (Cray XC40) systems. Since linear algebra algorithms underlie many of NERSC’s most pressing scientific data analysis problems, this collaboration will involve the development of novel randomized linear algebra algorithms, the implementation of these algorithms within the AMPLab stack and on Edison and Cori and the application of these algorithms to some of NERSC’s most pressing scientific data-analysis challenges, including problems in BioImaging, Neuroscience and Climate Science.

“Analytics workloads will be an increasingly important workload on our supercomputers and we are thrilled to support and participate in this key collaboration,” said Ryan Waite, senior vice president of products at Cray. “As Cray’s supercomputing platforms enable researchers and scientists to model reality ever more accurately using high-fidelity simulations, we have long seen the need for scalable, performant analytic tools to interpret the resulting data. The Berkeley Data Analytics Stack (BDAS)and Spark, in particular, are emerging as a de facto foundation of such a toolset because of their combined focus on productivity and scalable performance.”

Drawing strength from NERSC’s expertise in scientific data applications, the collaboration combines grand challenge analytical problems from NERSC, pioneering research into big data platforms and scalable randomized linear algebra methods from AMPLab and Cray’s long-standing expertise in scalable supercomputing systems. “We are looking forward to understanding and improving the systems-level behavior and performance of Spark when it is applied to challenging real-world analytics problems on some of Cray’s biggest platforms to date,” said Venkat Krishnamurthy of the Analytics Products group at Cray, who is leading Cray’s involvement in this initiative.

“The AMPLab has been a great success in terms of infrastructure development, but we are continually on the lookout for new use cases to stress-test our framework,” said Michael Mahoney, a faculty member in the University of California, Berkeley Department of Statistics and AMPLab and lead principal investigator on the project. “Spark is very good for certain data analysis computations, but typical Spark use cases haven’t stressed many of the sophisticated linear algebra computations that underlie popular machine learning algorithms. This has historically been the domain of scientific computing. We aim to bridge that gap, to the benefit of both areas.”

“There is currently a lot of momentum behind Spark in the commercial world, and we would like to explore how the scientific community can benefit from the resulting big data analytics capabilities,” said Prabhat, Data and Analytics Services Group Lead at NERSC. “Spark offers a highly productive interface for data scientists; the question in my mind is really regarding Spark’s performance and scalability. Historically, the HPC community has set a high bar for computing performance, and we are hopeful that this collaboration will lead the way in bridging the gap between big data analytics for commercial and high-performance scientific applications.”

About NERSC and Berkeley Lab

The National Energy Research Scientific Computing Center (NERSC) is the primary high-performance computing facility for scientific research sponsored by the U.S. Department of Energy’s Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 6,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the U.S. DOE Office of Science.

Source: NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storage, throughput, and new computing technologies. This round Read more…

HPC Pioneer Gordon Bell Passed Away

May 22, 2024

Legendary computer scientist Gordon Bell passed away last Friday at his home in Coronado, CA. He was 89. The New York Times has a nice tribute piece. A long-time pioneer with Digital Equipment Corp, he pushed hard for de Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC even earned a slide in Kathy Yelick’s opening keynote — Bey Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Core42 Is Building Its 172 Million-core AI Supercomputer in Texas

May 20, 2024

UAE-based Core42 is building an AI supercomputer with 172 million cores which will become operational later this year. The system, Condor Galaxy 3, was announced earlier this year and will have 192 nodes with Cerebras Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storag Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC eve Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire