Cray, AMPLab, NERSC Collaboration Targets Spark Performance on HPC Platforms

November 4, 2015

Nov. 4 — As data-centric workloads become increasingly common in scientific and industrial applications, a pressing concern is how to design large-scale data analytics stacks that simplify analysis of the resulting data. A new collaboration between Cray, researchers at UC Berkeley’s AMPLab and Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC) is working to address this issue.

The need to build and study increasingly detailed models of physical phenomena has benefited from advancement in high performance computing (HPC) for decades. It has also resulted in an exponential increase in data, from simulations as well as real-world experiments. This has fundamental implications for HPC systems design, such as the need for improved algorithmic methods and the ability to exploit deeper memory/storage hierarchies and efficient methods for data interchange and representation in a scientific workflow. The modern HPC platform has to be equally capable of handling both traditional HPC workloads and the emerging class of data-centric workloads and analytics motifs.

In the commercial sector, these challenges have fueled the development of frameworks such as Hadoop and Spark and a rapidly growing body of open-source software for common data analysis and machine learning problems. These technologies are typically designed for and implemented in distributed data centers consisting of a large number of commodity processing nodes, with an emphasis on scalability, fault tolerance and productivity. In contrast, HPC environments are focused primarily on no-compromise performance of carefully optimized codes at extreme scale.

Given this scenario, how can we the derive the greatest value from adapting productivity-oriented analytics tools such as Spark to HPC environments? And how can a framework like Spark better exploit supercomputing technologies like advanced interconnects and memory hierarchies to improve performance at scale, without losing its productivity benefits?

To address these questions researchers from Cray, AMPLab and NERSC are actively examining research and performance issues in getting Spark up and running on HPC environments such as NERSC’s Edison (Cray XC30) and Cori (Cray XC40) systems. Since linear algebra algorithms underlie many of NERSC’s most pressing scientific data analysis problems, this collaboration will involve the development of novel randomized linear algebra algorithms, the implementation of these algorithms within the AMPLab stack and on Edison and Cori and the application of these algorithms to some of NERSC’s most pressing scientific data-analysis challenges, including problems in BioImaging, Neuroscience and Climate Science.

“Analytics workloads will be an increasingly important workload on our supercomputers and we are thrilled to support and participate in this key collaboration,” said Ryan Waite, senior vice president of products at Cray. “As Cray’s supercomputing platforms enable researchers and scientists to model reality ever more accurately using high-fidelity simulations, we have long seen the need for scalable, performant analytic tools to interpret the resulting data. The Berkeley Data Analytics Stack (BDAS)and Spark, in particular, are emerging as a de facto foundation of such a toolset because of their combined focus on productivity and scalable performance.”

Drawing strength from NERSC’s expertise in scientific data applications, the collaboration combines grand challenge analytical problems from NERSC, pioneering research into big data platforms and scalable randomized linear algebra methods from AMPLab and Cray’s long-standing expertise in scalable supercomputing systems. “We are looking forward to understanding and improving the systems-level behavior and performance of Spark when it is applied to challenging real-world analytics problems on some of Cray’s biggest platforms to date,” said Venkat Krishnamurthy of the Analytics Products group at Cray, who is leading Cray’s involvement in this initiative.

“The AMPLab has been a great success in terms of infrastructure development, but we are continually on the lookout for new use cases to stress-test our framework,” said Michael Mahoney, a faculty member in the University of California, Berkeley Department of Statistics and AMPLab and lead principal investigator on the project. “Spark is very good for certain data analysis computations, but typical Spark use cases haven’t stressed many of the sophisticated linear algebra computations that underlie popular machine learning algorithms. This has historically been the domain of scientific computing. We aim to bridge that gap, to the benefit of both areas.”

“There is currently a lot of momentum behind Spark in the commercial world, and we would like to explore how the scientific community can benefit from the resulting big data analytics capabilities,” said Prabhat, Data and Analytics Services Group Lead at NERSC. “Spark offers a highly productive interface for data scientists; the question in my mind is really regarding Spark’s performance and scalability. Historically, the HPC community has set a high bar for computing performance, and we are hopeful that this collaboration will lead the way in bridging the gap between big data analytics for commercial and high-performance scientific applications.”

About NERSC and Berkeley Lab

The National Energy Research Scientific Computing Center (NERSC) is the primary high-performance computing facility for scientific research sponsored by the U.S. Department of Energy’s Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 6,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the U.S. DOE Office of Science.

Source: NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hours at the Argonne Leadership Computing Facility (ALCF). The o Read more…

By HPCwire Staff

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hour Read more…

By HPCwire Staff

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This