President Obama’s Executive Order ‘Creating a National Strategic Computing Initiative’

July 30, 2015

Editor’s Note: The full text of the White House Executive order creating a National Strategic Computing Initiative is posted here. Aside from the obvious recognition of the importance of HPC, there are many questions still to be sorted out. How will the new initiative relate to DOE’s ongoing Exascale Computing Initiative? Will there be new funding? How will the Executive Council function? Click here to view the HPCwire feature article on the new initiative. 

July 30 — By the authority vested in me as President by the Constitution and the laws of the United States of America, and to maximize benefits of high-performance computing (HPC) research, development, and deployment, it is hereby ordered as follows:

Section 1.  Policy.  In order to maximize the benefits of HPC for economic competitiveness and scientific discovery, the United States Government must create a coordinated Federal strategy in HPC research, development, and deployment.  Investment in HPC has contributed substantially to national economic prosperity and rapidly accelerated scientific discovery.  Creating and deploying technology at the leading edge is vital to advancing my Administration’s priorities and spurring innovation.  Accordingly, this order establishes the National Strategic Computing Initiative (NSCI).  The NSCI is a whole-of-government effort designed to create a cohesive, multi-agency strategic vision and Federal investment strategy, executed in collaboration with industry and academia, to maximize the benefits of HPC for the United States.

Over the past six decades, U.S. computing capabilities have been maintained through continuous research and the development and deployment of new computing systems with rapidly increasing performance on applications of major significance to government, industry, and academia.  Maximizing the benefits of HPC in the coming decades will require an effective national response to increasing demands for computing power, emerging technological challenges and opportunities, and growing economic dependency on and competition with other nations.  This national response will require a cohesive, strategic effort within the Federal Government and a close collaboration between the public and private sectors.

It is the policy of the United States to sustain and enhance its scientific, technological, and economic leadership position in HPC research, development, and deployment through a coordinated Federal strategy guided by four principles:

  1. The United States must deploy and apply new HPC technologies broadly for economic competitiveness and scientific discovery.
  2. The United States must foster public-private collaboration, relying on the respective strengths of government, industry, and academia to maximize the benefits of HPC.
  3. The United States must adopt a whole-of-government approach that draws upon the strengths of and seeks cooperation among all executive departments and agencies with significant expertise or equities in HPC while also collaborating with industry and academia.
  4. The United States must develop a comprehensive technical and scientific approach to transition HPC research on hardware, system software, development tools, and applications efficiently into development and, ultimately, operations.

This order establishes the NSCI to implement this whole-of-government strategy, in collaboration with industry and academia, for HPC research, development, and deployment.

Sec. 2.  Objectives.  Executive departments, agencies, and offices (agencies) participating in the NSCI shall pursue five strategic objectives:

  1. Accelerating delivery of a capable exascale computing system that integrates hardware and software capability to deliver approximately 100 times the performance of current 10 petaflop systems across a range of applications representing government needs.
  2. Increasing coherence between the technology base used for modeling and simulation and that used for data analytic computing.
  3. Establishing, over the next 15 years, a viable path forward for future HPC systems even after the limits of current semiconductor technology are reached (the “post- Moore’s Law era”).
  4. Increasing the capacity and capability of an enduring national HPC ecosystem by employing a holistic approach that addresses relevant factors such as networking technology, workflow, downward scaling, foundational algorithms and software, accessibility, and workforce development.
  5. Developing an enduring public-private collaboration to ensure that the benefits of the research and development advances are, to the greatest extent, shared between the United States Government and industrial and academic sectors.

Sec. 3.  Roles and Responsibilities.  To achieve the five strategic objectives, this order identifies lead agencies, foundational research and development agencies, and deployment agencies.  Lead agencies are charged with developing and delivering the next generation of integrated HPC capability and will engage in mutually supportive research and development in hardware and software, as well as in developing the workforce to support the objectives of the NSCI.  Foundational research and development agencies are charged with fundamental scientific discovery work and associated advances in engineering necessary to support the NSCI objectives.  Deployment agencies will develop mission-based HPC requirements to influence the early stages of the design of new HPC systems and will seek viewpoints from the private sector and academia on target HPC requirements.  These groups may expand to include other government entities as HPC-related mission needs emerge.

(a)  Lead Agencies.  There are three lead agencies for the NSCI:  the Department of Energy (DOE), the Department of Defense (DOD), and the National Science Foundation (NSF).  The DOE Office of Science and DOE National Nuclear Security Administration will execute a joint program focused on advanced simulation through a capable exascale computing program emphasizing sustained performance on relevant applications and analytic computing to support their missions.  NSF will play a central role in scientific discovery advances, the broader HPC ecosystem for scientific discovery, and workforce development.  DOD will focus on data analytic computing to support its mission.  The assignment of these responsibilities reflects the historical roles that each of the lead agencies have played in pushing the frontiers of HPC, and will keep the Nation on the forefront of this strategically important field.  The lead agencies will also work with the foundational research and development agencies and the deployment agencies to support the objectives of the NSCI and address the wide variety of needs across the Federal Government.

(b)  Foundational Research and Development Agencies.  There are two foundational research and development agencies for the NSCI:  the Intelligence Advanced Research Projects Activity (IARPA) and the National Institute of Standards and Technology (NIST).  IARPA will focus on future computing paradigms offering an alternative to standard semiconductor computing technologies.  NIST will focus on measurement science to support future computing technologies.  The foundational research and development agencies will coordinate with deployment agencies to enable effective transition of research and development efforts that support the wide variety of requirements across the Federal Government.

(c)  Deployment Agencies.  There are five deployment agencies for the NSCI:  the National Aeronautics and Space Administration, the Federal Bureau of Investigation, the National Institutes of Health, the Department of Homeland Security, and the National Oceanic and Atmospheric Administration.  These agencies may participate in the co-design process to integrate the special requirements of their respective missions and influence the early stages of design of new HPC systems, software, and applications.  Agencies will also have the opportunity to participate in testing, supporting workforce development activities, and ensuring effective deployment within their mission contexts.

Sec. 4.  Executive Council.  (a)  To ensure accountability for and coordination of research, development, and deployment activities within the NSCI, there is established an NSCI Executive Council to be co-chaired by the Director of the Office of Science and Technology Policy (OSTP) and the Director of the Office of Management and Budget (OMB).  The Director of OSTP shall designate members of the Executive Council from within the executive branch.  The Executive Council will include representatives from agencies with roles and responsibilities as identified in this order.

(b)  The Executive Council shall coordinate and collaborate with the National Science and Technology Council established by Executive Order 12881 of November 23, 1993, and its subordinate entities as appropriate to ensure that HPC efforts across the Federal Government are aligned with the NSCI.  The Executive Council shall also consult with representatives from other agencies as it determines necessary.  The Executive Council may create additional task forces as needed to ensure accountability and coordination.

(c)  The Executive Council shall meet regularly to assess the status of efforts to implement this order.  The Executive Council shall meet no less often than twice yearly in the first year after issuance of this order.  The Executive Council may revise the meeting frequency as needed thereafter.  In the event the Executive Council is unable to reach consensus, the Co-Chairs will be responsible for documenting issues and potential resolutions through a process led by OSTP and OMB.

(d)   The Executive Council will encourage agencies to collaborate with the private sector as appropriate.  The Executive Council may seek advice from the President’s Council of Advisors on Science and Technology through the Assistant to the President for Science and Technology and may interact with other private sector groups consistent with the Federal Advisory Committee Act.

Sec. 5.  Implementation.  (a)  The Executive Council shall, within 90 days of the date of this order, establish an implementation plan to support and align efforts across agencies in support of the NSCI objectives.  Annually thereafter for 5 years, the Executive Council shall update the implementation plan as required and document the progress made in implementing the plan, engaging with the private sector, and taking actions to implement this order.  After 5 years, updates to the implementation plan may be requested at the discretion of the Co-Chairs.

(b)  The Co-Chairs shall prepare a report each year until 5 years from the date of this order on the status of the NSCI for the President.  After 5 years, reports may be prepared at the discretion of the Co-Chairs.

Sec. 6.  Definitions.  For the purposes of this order:

The term “high-performance computing” refers to systems that, through a combination of processing capability and storage capacity, can solve computational problems that are beyond the capability of small- to medium-scale systems.

The term “petaflop” refers to the ability to perform one quadrillion arithmetic operations per second.

The term “exascale computing system” refers to a system operating at one thousand petaflops.

Sec. 7.  General Provisions.  (a)  Nothing in this order shall be construed to impair or otherwise affect:

  1. the authority granted by law to an executive department, agency, or the head thereof; or
  2. the functions of the Director of OMB relating to budgetary, administrative, or legislative proposals.

(b)    This order shall be implemented consistent with applicable law and subject to the availability of appropriations.

(c)    This order is not intended to, and does not, create any right or benefit, substantive or procedural, enforceable at law or in equity by any party against the United States, its departments, agencies, or entities, its officers, employees, or agents, or any other person.

BARACK OBAMA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire