CU Aerospace Uses iForge Supercomputer to Improve Lasers, Manufacturing

October 4, 2016

Oct. 4 — The physics of the world around us are often too complex to fully model in a virtual environment. The complexity can bottleneck improvements in manufacturing, scientific research and development, and high-power lasers used for defeating ballistic missiles.

A relatively new software package called BLAZE Multiphysics from CU Aerospace is making what used to be too complex—simulating a range of laser physics within a flowing plasma, for example—a fully modeled reality for researchers. This was done by combining a number of new, reconfigurable physical models within BLAZE. The most innovative of these new models were recently validated using the National Center for Supercomputing Applications’ (NCSA) industry supercomputer iForge—an on demand resource for private companies performing large-scale simulations.

The new models can be applied in a wide range of scenarios but have been uniquely useful in modeling gas lasers. They were described in a paper published in mid-September by Director of Modeling and Simulation for CU Aerospace Andrew Palla. The multiphysics modeling capabilities in BLAZE have been 20 years in the making, and the software has been on the market for the past two years—with notable customers in the Department of Defense and industry.

Laser pointers are a type of “solid-state lasers,” meaning the beam is generated and amplified in a solid material. Gas lasers, on the other hand, rely on a gas, and as a result, typically produce a beam which can more effectively deliver high power over long distances.

“CU Aerospace engineers have cut through steel plating with a kilowatt-class gas laser at a distance of several feet over several seconds. The real question is, can you develop a far more powerful laser to do this to a ballistic missile almost instantly at 10 miles, 100 miles, 1,000 miles,” Palla said.

“To develop high-power lasers that operate over long distances, we need to represent the multiple layers of physics in one single virtual space. BLAZE can do that now,” Palla said.

Models researchers create independently to study lasers often leave out important physics due to the challenges associated with representing them numerically. For example, electric discharge physics are often left assumed constant, or “frozen,” in gas laser models; in reality, they’re far from constant. And since these discharge physics influence other processes crucial to the formation of the actual beam, researchers end up with incomplete models.

“Unless you have all of these different physical processes and unless you are correctly representing the rates at which they’re all occurring, you’re not going to get the right answer,” Palla said. “Our software can handle all of these different physics—fluid-dynamics, optical-physics, discharge physics, etc.—in one coupled simulation, and that’s particularly innovative.”

Not Just Lasers

BLAZE is versatile and isn’t just used for simulating laser physics. Researchers can develop their own models and combine them with existing ones provided with the BLAZE simulation engine to virtually prototype innovative solutions to manufacturing, and engineering research and development challenges.

Philippe Geubelle, head of the Department of Aerospace Engineering at the University of Illinois at Urbana-Champaign and an NCSA Faculty Fellow, is working with CU Aerospace to analyze and design a new kind of heat exchanger made of a microvascular fiber-reinforced composite material.

“These microvascular composites are made using sacrificial fibers. You place these fibers in the preform, and go through the traditional manufacturing process. Then, you raise the temperature a little bit, and the sacrificial fibers get vaporized and you get these very nice channels,” Geubelle said, adding that the manufacturing method has strong potential for self-healing and actively-cooled composite materials.

For the heat exchanger, the different processes at play range from temperature to flow rates for the fluids down to the shape of the channels—with almost unending possibilities for changing each. Using BLAZE and iForge, Guebelle and his team hope to narrow down the choices to a design that results in the most efficient heat exchanger.

“This from a simulation perspective is not an easy thing to do because it’s a multiphysics problem, Geubelle said. “It combines fluid flow and thermal modeling, which are two different physics worlds. BLAZE’s code is excellent for solving this multi-physics problem.”


Source: Austin Keating, NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This