CU Boulder Wins $20M to Lead National Quantum Nanofab Facility

June 20, 2024

June 20, 2024 — Researchers at CU Boulder will soon begin work on what they’re calling the “quantum machine shop” of the 21st century. The U.S. National Science Foundation today announced a $20 million grant to CU Boulder to launch a facility known as the National Quantum Nanofab (NQN).

From left to right, Aju Jugessur, Juliet Gopinath, Scott Diddams and Cindy Regal, who will lead the realization of a new facility at CU Boulder for making incredibly small devices. Credit: Patrick Campbell/CU Boulder.

In this facility, Colorado researchers and quantum specialists from around the country will be able to design and build incredibly small devices that tap into the world of atoms and photons—the tiny packets of energy that make up light.

Principal Investigator Scott Diddams, professor in the Department of Electrical, Computer and Energy Engineering, alongside a team of physicists and engineers, will lead the realization of this maker space. Diddams said it will help transform discoveries from the quantum world into technologies and devices that can have greater impact on society, and shore up a rapidly growing sector of Colorado’s economy.

Tiny means big news in the quantum world.

“Fundamentally, quantum is small,” Diddams said. “A focus of the NQN will be on building quantum systems based on single ions, atoms and photons. So the devices on chips that we’re building are necessarily going to be small, too.”

In this case, small means much smaller than the width of a human hair.

Diddams noted that it will take about five years to build the facility: a clean room and nanofabrication tools housed in a new annex to the Sustainable, Energy and Environment Laboratory (SEEL) building on CU Boulder’s East Campus. It will be supported and connected to the existing Colorado Shared Instrumentation in Nanofabrication and Characterization (COSINC) characterization and cleanroom facilities. The space will be sealed up tight to prevent dust or other contaminants from damaging those sensitive technologies, and anyone entering will need to wear a clean room “bunny suit,” shoe covers and more.

Once the facility is complete, users from CU Boulder, Colorado industry and government labs and from across the United States, will be able to employ the various nanofabrication tools to begin creating new technologies. These may include the core integrated components of clocks that can keep time based on the “ticking” of atoms or quantum computer chips that may outperform the fastest computers on the market today.

“This new facility will significantly enhance CU Boulder’s quantum ecosystem by offering access to fabrication facilities that are unparalleled in the nation,” said Massimo Ruzzene, vice chancellor for Research and Innovation and dean of the institutes at CU Boulder. “This award further acknowledges the intellectual leadership of our quantum researchers, and the resulting facility will be transformational in terms of translating quantum discoveries into impactful technologies.”

Co-investigators on the Nanofab facility include Juliet Gopinath, professor of electrical, computer and energy engineering; Aju Jugessur, senior director of CU Boulder’s COSINC facility; and Cindy Regal, Baur-SPIE Chair in Optical Physics and Photonics at JILA.

The Growing Quantum Economy

Quantum technologies are on their way toward becoming a major slice of Colorado’s economy. The state government estimates the quantum industry could add thousands of jobs to Colorado over the next decade.

Last year, the U.S. Department of Commerce designated Colorado as a tech hub for quantum technology. In May, Colorado Gov. Jared Polis signed a bill that will provide access to $74 million in state investment to support the local quantum industry—which will go into effect if Elevate Quantum, a coalition of 120 organizations in the Rocky Mountain West, which includes CU Boulder as a prime contributor, secures a federal implementation grant from the Economic Development Administration (EDA).

To make those aspirations a reality, researchers will need to find new ways to take the scientific advances that presently fill up entire rooms, shrink them down and manufacture them at scale. The Nanofab facility is where this kind of innovation will happen. Traditional technologies, for example, largely depend on computer chips made of silicon. Quantum technologies, however, will be made of a wider range of materials with names like nitride, tantalum and lithium niobate that often need to operate in vacuum or at extremely cold temperatures near absolute zero.

“NSF invests in research infrastructure to ensure U.S. researchers across the nation are at the forefront of science and engineering,” said Susan Margulies, NSF assistant director for engineering. “The NSF National Quantum Nanofab will enable U.S. leadership in the development and manufacturing of quantum devices and help prepare our future quantum workforce.”

Diddams imagines that techniques developed in the new facility will one day lead to companies manufacturing wafers about the size of an LP record that contain not one but thousands of individual quantum chips.

“This will give us capabilities to continue to make scientific advances, but also, in parallel, solve problems that will lead to actual devices,” he said.

Quantum Experts of the Future

The facility will help produce something else: quantum savvy people. The space will provide students from CU Boulder and other institutions, including local community colleges, the chance to learn the ins and outs of making nanodevices—feeding Colorado’s growing need for an experienced quantum workforce.

“What’s going to make our facility unique is the community around it,” Diddams said. “I expect that as professors and students work in there and brush shoulders with people from our local companies, new opportunities will arise for people to learn and innovate together.”


Source: Daniel Strain, CU Boulder

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ARM, Fujitsu Targeting Open-source Software for Power Efficiency in 2-nm Chip

July 19, 2024

Fujitsu and ARM are relying on open-source software to bring power efficiency to an air-cooled supercomputing chip that will ship in 2027. Monaka chip, which will be made using the 2-nanometer process, is based on the Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI projects.). Other tools have joined the CUDA castle siege. AMD Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was recently posted by CERN’s department of experimental physi Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to communities across the globe. As climate change is warming ocea Read more…

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical claims. A paper published on July 10 by researchers in the U. Read more…

Belt-Tightening in Store for Most Federal FY25 Science Budets

July 15, 2024

If it’s summer, it’s federal budgeting time, not to mention an election year as well. There’s an excellent summary of the curent state of FY25 efforts reported in AIP’s policy FYI: Science Policy News. Belt-tight Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI pro Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to com Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Leading Solution Providers

Contributors

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire