David Graves to Head New Research at PPPL for Plasma Applications in Industry and Quantum Information Science

May 11, 2020

May 11, 2020 — David Graves, an internationally-known chemical engineer, has been named to lead a new research enterprise that will explore plasma applications in nanotechnology for everything from semiconductor manufacturing to the next generation of super-fast quantum computers.

Graves, a professor at the University of California, Berkeley, since 1986, is an expert in plasma applications in semiconductor manufacturing. He will become the Princeton Plasma Physics Laboratory’s (PPPL) first associate laboratory director for Low-Temperature Plasma Surface Interactions, effective June 1. He will likely begin his new position from his home in Lafayette, California, in the East Bay region of San Francisco.

David Graves has been named associate laboratory director for Low Temperature Plasma Surface Interactions. Image courtesy of David Graves, PPPL.

He will lead a collaborative research effort to not only understand and measure how plasma is used in the manufacture of computer chips, but also to explore how plasma could be used to help fabricate powerful quantum computing devices over the next decade.

“This is the apex of our thrust into becoming a multipurpose lab,” said Steve Cowley, PPPL director, who recruited Graves. “Working with Princeton University, and with industry and the U.S. Department of Energy (DOE), we are going to make a big push to do research that will help us understand how you can manufacture at the scale of a nanometer.” A nanometer, one-billionth of a meter, is about ten thousand times less than the width of a human hair.

The new initiative  will draw on PPPL’s expertise in low temperature plasmas, diagnostics, and modeling. At the same time, it will work closely with plasma semiconductor equipment industries and will collaborate with Princeton University experts in various departments, including chemical and biological engineering, electrical engineering, materials science, and physics.  In particular, collaborations with PRISM (the Princeton Institute for the Science and Technology of Materials) are planned, Cowley said. “I want to see us more tightly bound to the University in some areas because that way we get cross-fertilization,” he said.

Graves will also have an appointment as professor in the Princeton University Department of Chemical and Biological Engineering, starting July 1. He is retiring from his position at Berkeley at the end of this semester. He is currently writing a book (“Plasma Biology”) on plasma applications in biology and medicine. He said he changed his retirement plans to take the position at PPPL and Princeton University. “This seemed like a great opportunity,” Graves said. “There’s a lot we can do at a national laboratory where there’s bigger scale, world-class colleagues, powerful computers and other world-class facilities.”

“Exciting new direction for the Lab”

Graves is already working with Jon Menard, PPPL deputy director for research, on the strategic plan for the new research initiative  over the next five years. “It’s a really exciting new direction for the Lab that will build upon our unique expertise in diagnosing and simulating low-temperature plasmas,” Menard said. “It also brings us much closer to the university and industry, which is great for everyone.”

The staff will grow over the next five years and PPPL is recruiting for an expert in nano-fabrication and quantum devices. The first planned research would use converted PPPL laboratory space fitted with equipment provided by industry. Subsequent work  would use laboratory space at PRISM on Princeton University’s campus.  In the longer term, researchers in the growing group  would have brand new laboratory and office space as a central part the Princeton Plasma Innovation Center (PPIC), a new building planned at PPPL.

Physicists Yevgeny Raitses, principal investigator for the Princeton Collaborative Low Temperature Plasma Research Facility (PCRF) and head of the Laboratory for Plasma Nanosynthesis, and Igor Kavanovich, co-principal investigator of PCRF, are both internationally-known experts in low temperature plasmas who have forged recent partnerships between PPPL and various industry partners. The new initiative builds on their work, Cowley said.

A priority research area

Research aimed at developing quantum information science (QIS) is a priority for the DOE. Quantum computers could be very powerful in solving complex scientific problems, including simulating quantum behavior in material or chemical systems. QIS could also have applications in quantum communication, especially in encryption, and quantum sensing. It could potentially have an impact in areas such as national security. “A key question is whether plasma-based fabrication tools commonly used today will play a role in fabricating quantum devices in the future,” Menard said. “There are huge implications in that area,” Menard said. “We want to be part of that.”

Graves is an expert on applying molecular dynamics simulations to low temperature plasma-surface interactions. These simulations are used to understand how plasma-generated ions, atoms and molecules interact with various surfaces. He has extensive research experience in academia and industry in plasma-related semiconductor manufacturing. That expertise will be useful for understanding how to make “very fine structures and circuits” at the nanometer, sub-nanometer and even atom-by-atom level, Menard said. “David’s going to bring a lot of modeling and fundamental understanding to that process. That, paired with our expertise and measurement capabilities, should make us unique in the U.S. in terms of what we can do in this area.”

Graves was born in Daytona Beach, Florida, and moved a lot as a child because his father was in the U.S. Air Force. He lived in Homestead, Florida; near Kansas City, Missouri; and in North Bay Ontario; and finished high school near Phoenix, Arizona.

Graves received bachelor’s and master’s degrees in chemical engineering from the University of Arizona and went on to pursue a doctoral degree in the subject, graduating with a Ph.D. from the University of Minnesota in 1986. He is a fellow of the Institute of Physics and the American Vacuum Society. He is the author or co-author of more than 280 peer-reviewed publications. During his long career at Berkeley, he has supervised 30 Ph.D. students and 26 post-doctoral students, many of whom are now in leadership positions in industry and academia.

A leader since the 1990s

Graves has been a leader in the use of plasma in the semiconductor industry since the 1990s. In 1996, he co-chaired a National Research Council (NRC) workshop and co-edited the NRC’s “Database Needs for Modeling and Simulation of Plasma Processing.” In 2008, he performed a similar role for a DOE workshop on low-temperature plasmas applications resulting in the report “Low Temperature Plasma Science Challenges for the Next Decade.”

Graves is an admitted Francophile who speaks (near) fluent French and has spent long stretches of time in France as a researcher. He was named Maître de Recherche (master of research) at the École Polytechnic in Palaiseau, France, in 2006. He was an invited researcher at the University of Perpignan in 2010 and received a chaire d’excellence from the Nanoscience Foundation in Grenoble, France, to study plasma-graphene interactions.

He has received numerous honors during his career. He was appointed the first Lam Research Distinguished Chair in Semiconductor Processing at Berkeley for 2011-2016. More recently, he received the Will Allis Prize in Ionized Gas from the American Physical Society in 2014 and the 2017 Nishizawa Award, associated with the Dry Process Symposium in Japan. In 2019, he was appointed ‘foreign expert’ at Huazhong University of Science and Technology in Wuhan, China. He served as the first senior editor of IEEE Transactions on Radiation and Plasma Medical Science.

Graves has been married for 35 years to Sue Graves, who recently retired from the City of Lafayette, where she worked in the school bus program. The couple has three adult children. Graves enjoys bicycling and yoga and the couple loves to travel. They also enjoy hiking, visiting museums, listening to jazz music, and going to the theater.

About PPPL

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov(link is external).


Source: Jeanne Jackson DeVoe, PPPL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire