Deep Learning AI on XSEDE Systems Promises Fewer False Alarms and Early Prediction of Breast Cancer

September 9, 2019

September 9, 2019 — Screening mammography is an important tool against breast cancer. But it has its limitations. A “normal” screening mammogram means that a woman doesn’t have cancer now. But doctors wonder whether “normal” images contain clues about a woman’s risk of developing breast cancer in the future. Also, most women “recalled” for more tests when their mammograms show suspicious masses don’t have cancer. With the help of XSEDE’s Extended Collaborative Support Service and Novel and Innovative Projects, scientists at the University of Pittsburgh Medical Center are using the XSEDE-allocated Bridges-AI supercomputer at the Pittsburgh Supercomputing Center to run artificial intelligence programs meant to determine the risk of developing breast cancer and to prevent false recalls.

Using AIs to identify false recalls by classifying the three categories (negative, false recalls, and malignancy) of digital mammogram images in breast cancer screening. Image courtesy of XSEDE

Why It’s Important

Despite a lot of progress in improving survival and quality of life for women with breast cancer, the disease remains a major threat to women’s health. It’s the most common cancer in women and is either the first or second most common cause of cancer death for women in the largest racial and ethnic groups, accounting for 41,000 deaths in 2016 alone.

Screening mammography is an important tool for getting early warning, when the disease is easiest to treat. But it’s not perfect. For women whose scans show no signs of breast cancer, doctors wonder whether that scan may contain information they could use to predict future risk. More than 10 percent of women who get mammograms are “recalled” for further testing. But nearly 90 percent of the time it’s a false alarm. That’s something like 3 million women in the U.S. who go through the stress of unnecessary recall each year.

“We collected a large set of images from UPMC’s digital screening mammography … We wanted to see if ‘normal,’ or negative, digital mammography images in screening were predictive for the risk of breast cancer in the future. There’s also the very critical breast-cancer screening issue that when a lot of women come for mammography and when radiologists visually assess their images, it’s not certain in many images whether cancer is present or not. This creates a difficult decision-making process on whether to ask these women to come back for additional workup,” said Shandong Wu, University of Pittsburgh Medical Center

Expert radiologists can tell a lot from a modern digital mammogram. But Shandong Wu and his colleagues at the University of Pittsburgh Medical Center (UPMC) wondered if artificial intelligence (AI) could detect subtle hints in mammograms that the human eye can’t see. They tested their “deep learning” AIs on digital mammograms from UPMC patients whose status was already known, running the programs on the XSEDE-allocated Bridges and Bridges-AI systems at the Pittsburgh Supercomputing Center.

How XSEDE Helped

The task for the UPMC scientists’ deep-learning software was a big one. Each digital mammogram is more than 2,000 by 3,000 pixels large—that’s dozens of megabytes of data for each image. And to do their study, they needed to “train” and then test their AIs on thousands of images. Their AIs are also pretrained on large datasets with tens of thousands of images. The size of the data for AI modeling was enormous, making the computations slow on the computers available to the researchers at their own laboratory.

“[Roberto] was really helpful. He converted a Matlab container to Singularity, and he wrote a wrapper to run Matlab R2019a on the DGX-2. Sergiu Sanielevici [leader of XSEDE’s Novel and Innovative Projects] has been very helpful in supporting our research and he regularly inquires our progress and needs, making sure our issues are properly addressed. Tom Maiden, Rick Costa and Bryan Learn also assisted us in solving problems. Without the support of XSEDE, I don’t think we would have been able to do this work.”—Shandong Wu, University of Pittsburgh Medical Center

Working with experts from XSEDE’s Novel and Innovative Projects program and Extended Collaborative Support Service (ECSS), including Roberto Gomez and other ECSS staff at PSC, the team used the graphics processing unit (GPU) nodes of Bridges-AI to train and run their AIs. Deep learning, which works by building up layers of different kinds of information and then pruning connections between the layers that don’t produce the desired result, tends to work best on GPUs. The new NVIDIA “Volta” GPUs in Bridges-AI contain accelerators, called “tensor cores,” specifically designed for deep learning. Bridges-AI’s GPU nodes combine eight to 16 GPUs each for up to 512 gigabytes of extremely fast GPU memory. The large memory available to PSC’s GPU nodes was central to the success of the AIs, bringing the computation time down from weeks to hours. The NVIDIA DGX-2 node, deployed in Bridges-AI as a first for open research, and its massive memory were particularly useful.

When an AI is designed to produce a binary result—yes or no, positive or negative—scientists often report that result as a graph of true positives versus false positives. The larger the “area under the curve,” or AUC, the better the AI’s accuracy. AUC can range from zero to one, where zero means that the classifier has no predictive value and one implies perfect prediction. Versions of the screening AIs had an AUC of 0.73 when predicting whether a woman with a negative mammogram would develop cancer over the next 1.5 years. Better, the recall AIs could tell the difference between women with cancer and those who would have been recalled even though they didn’t have cancer with an AUC of 0.80. These results are promising, and could have value for clinical use after further evaluation.

“In this kind of work—medical images—we deal with larger-scale and sometime 3D volumetric data. All those images are high-resolution images … and we have more than 10 thousand [of them]. Our local GPUs did not have enough memory to accommodate such a scale of data for AI modeling. It could take weeks to run one experiment without the support of powerful GPUs. Using the GPUs from XSEDE, with larger memory, reduced that to a couple of hours,” said Shandong Wu, University of Pittsburgh Medical Center.

With XSEDE support, Dr. Wu’s lab is developing several other AIs to improve breast cancer diagnosis. One would pre-read digital breast tomosynthesis—a kind of 3D breast imaging method—to reduce the time it takes radiologists to read the scans. Another is designed to automatically identify and correct mistakes in the labeling in a dataset for AI learning. Finally, the scientists are also working on AIs to predict breast cancer pathology test markers and the recurrence risk for women who’ve already been diagnosed with breast cancer.

Further work beyond these preliminary results will compare the benefits of improved AIs against the current methods used by doctors. The aim is to improve care and lower cost in real-world clinical practice. The UPMC team reported their results in five oral presentations at the Radiological Society of North America (RSNA) Annual Meeting in Chicago last year, three presentations at the Society of Photo-Optical Instrumentation Engineers Medical Imaging conference in San Diego this year, and several upcoming journal manuscripts.


Source: The Extreme Science and Engineering Discovery Environment (XSEDE)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This