Deep Learning-Based Surrogate Models Outperform Simulators and Could Hasten Scientific Discoveries

June 18, 2020

June 18, 2020 — Surrogate models supported by neural networks can perform as well, and in some ways better, than computationally expensive simulators and could lead to new insights in complicated physics problems such as inertial confinement fusion (ICF), Lawrence Livermore National Laboratory (LLNL) scientists reported.

Lawrence Livermore researchers are integrating technologies such as the Sierra supercomputer (left) and the National Ignition Facility (NIF) (right) to understand complex problems like fusion in energy and the aging effects in nuclear weapons. Data from NIF experiments (inset, right) and simulation (inset, left) are being combined with deep learning methods to improve areas important to national security and our future energy sector. Illustration by Tanya Quijalvo/LLNL.

In a paper published by the Proceedings of the National Academy of Sciences (PNAS), LLNL researchers describe the development of a deep learning-driven Manifold & Cyclically Consistent (MaCC) surrogate model incorporating a multi-modal neural network capable of quickly and accurately emulating complex scientific processes, including the high-energy density physics involved in ICF.

The research team applied the model to ICF implosions performed at the National Ignition Facility (NIF), in which a computationally expensive numerical simulator is used to predict the energy yield of a target imploded by shock waves produced by the facility’s high-energy laser. Comparing the results of the neural network-backed surrogate to the existing simulator, the researchers found the surrogate could adequately replicate the simulator, and significantly outperformed the current state-of-the-art in surrogate models across a wide range of metrics.

“One major question we were dealing with was ‘how do we start using machine learning when you have a lot of different kinds of data?’ ” said LLNL computer scientist and lead author Rushil Anirudh. “What we proposed was making the problem simpler by finding a common space where all these modalities, such as high pressure or temperature, live and do the analysis within that space. We’re saying that deep learning can capture the important relationships between all these different data sources and give us a compact representation for all of them.

“The nice thing about doing all this is not only that it makes the analysis easier, because now you have a common space for all these modalities, but we also showed that doing it this way actually gives you better models, better analysis and objectively better results than with baseline approaches,” Anirudh added.

Simulations that would normally take a numerical simulator a half-hour to run could be done equally as well within a fraction of a second using neural networks, Anirudh explained. Perhaps even more valuable than saving compute time, explained computer scientist and co-author Timo Bremer, is the demonstrated ability of the deep learning surrogate model to analyze a large volume of complex, high-dimensional data in the ICF test case, which has implications for stockpile modernization efforts. The results indicate the approach could lead to new scientific discoveries and a completely novel class of techniques for performing and analyzing simulations, Bremer said.

This is particularly important at NIF, Bremer explained, where scientists do not yet fully understand why discrepancies exist between simulations and experiments. In the future, deep learning models could elicit capabilities that didn’t exist before and provide a way for scientists to analyze the massive amounts of X-ray images, sensor data and other information collected from diagnostics of each NIF shot, including data that has not been incorporated because there is too much of it to be analyzed by humans alone, Bremer said.

“This tool is providing us with a fundamentally different way of connecting simulations to experiments,” Bremer said. “By building these deep learning models, it allows us to directly predict the full complexity of the simulation data. Using this common latent space to correlate all these different modalities and different diagnostics, and using that space to connect experiments to simulations, is going to be extremely valuable, not just for this particular piece of science, but everything that tries to combine computational sciences with experimental sciences. This is something that could potentially lead to new insights in a way that’s just unfeasible right now.”

Comparing the results of predictions made by the surrogate model to the simulator typically used for ICF experiments, the researchers found the MaCC surrogate was nearly indistinguishable from the simulator in errors and expected quantities of energy yield and more accurate than other types of surrogate models. Researchers said the key to the MaCC model’s success was the coupling of forward and inverse models and training them on data together. The surrogate model used data inputs to make predictions, and those predictions were run through an inverse model to estimate, from the outputs, what the inputs might have been. During training, the surrogate’s neural networks learned to be compatible with the inverse models, meaning that errors did not accumulate as much as they would have before, Anirudh said.

“We were exploring this notion of self-consistency,” Anirudh explained. “We found that including the inverse problem into the surrogate modeling process is actually essential. It makes the problem more data-efficient and slightly more robust. When you put these two pieces together, the inverse model and the common space for all the modalities, you get this grand surrogate model that has all these other desirable properties — it is more efficient and better with less amount of data, and it’s also resilient to sampling artifacts.”

The team said the benefit of machine learning-based surrogates is that they can speed up extremely complex calculations and compare varied data sources efficiently without requiring a scientist to scan tremendous amounts of data. As simulators become increasingly complex, producing even more data, such surrogate models will become a fundamental complementary tool for scientific discovery, researchers said.

“The tools we built will be useful even as the simulation becomes more complex,” said computer scientist and co-author Jayaraman Thiagarajan. “Tomorrow we will get new computing power, bigger supercomputers and more accurate calculations, and these techniques will still hold true. We are surprisingly finding that you can produce very powerful emulators for the underlying complex simulations, and that’s where this becomes very important.

‘As long as you can approximate the underlying science using a mathematical model, the speed at which we can explore the space becomes really, really fast,” Thiagarajan continued. “That will hopefully help us in the future to make scientific discoveries even quicker and more effectively. We believe that even though we used it for this particular application, this approach is broadly applicable to the general umbrella of science.”

Researchers said the MaCC surrogate model could be adapted for any future change in modality, new types of sensors or imaging techniques. Because of its flexibility and accuracy, the model and its deep learning approach, referred to at LLNL as “cognitive simulation” or simply CogSim, is being applied to a number of other projects within the Laboratory and is transitioning over to programmatic work, including efforts in uncertainty quantification, weapons physics design, magnetic confinement fusion and other laser projects.

MaCC is a key product of the Lab’s broader Cognitive Simulation Director’s Initiative, led by principal investigator and LLNL physicist Brian Spears and funded through the Laboratory Directed Research and Development (LDRD) program. The initiative aims to advance a wide range of AI technologies and computational platforms specifically designed to improve scientific predictions by more effectively coupling precision simulation with experimental data. By focusing on both the needs in critical mission spaces and the opportunities presented by AI and compute advances, the initiative has helped further LLNL’s lead in using AI for science.

“MaCC’s ability to combine multiple, scientifically relevant data streams opens the door for a wide range of new analyses,” Spears said. “It will allow us to extract information from our most valuable and mission-critical experimental and simulation data sets that has been inaccessible until now. Fully exploiting this information in concert with a new suite of related CogSim tools will lead quickly and directly to improved predictive models.”

The research team has made their data publicly available on the web.


Source: Lawrence Livermore National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about how AI can benefit their business operations and products. Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman Institute for Advanced Science and Technology at the Universi Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Gordon Bell Special Prize for High Performance Computing-Ba Read more…

By Oliver Peckham

AWS Solution Channel

Introducing AWS ParallelCluster as an Intel Select Solution

High performance computing (HPC) system owners can spend weeks or months researching, procuring, and assembling components to build HPC clusters to run their workloads. Understanding and managing the complexities of compute, storage, networking, and software requirements can be confusing and time-consuming, slowing innovation and results. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 19, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 19, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

SC20 Keynote: Climate, Exascale & the Ultimate Answer

November 19, 2020

SC20’s keynote was delivered by renowned meteorologist and climatologist Bjorn Stevens, a director at the Max Planck Institute for Meteorology since 2008 and a professor at the University of Hamburg. In his keynote, Stevens traced the history of climate science from its earliest days through... Read more…

By Oliver Peckham

EuroHPC Exec. Dir. Talks Procurement, EPI, and Europe’s Efforts to Control its HPC Destiny

November 19, 2020

While much of the HPC community’s attention is fixed on SC20’s flood of news and new product announcements, Anders Dam Jensen, the newly-minted executive di Read more…

By Steve Conway

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This