Deep Learning-Based Surrogate Models Outperform Simulators and Could Hasten Scientific Discoveries

June 18, 2020

June 18, 2020 — Surrogate models supported by neural networks can perform as well, and in some ways better, than computationally expensive simulators and could lead to new insights in complicated physics problems such as inertial confinement fusion (ICF), Lawrence Livermore National Laboratory (LLNL) scientists reported.

Lawrence Livermore researchers are integrating technologies such as the Sierra supercomputer (left) and the National Ignition Facility (NIF) (right) to understand complex problems like fusion in energy and the aging effects in nuclear weapons. Data from NIF experiments (inset, right) and simulation (inset, left) are being combined with deep learning methods to improve areas important to national security and our future energy sector. Illustration by Tanya Quijalvo/LLNL.

In a paper published by the Proceedings of the National Academy of Sciences (PNAS), LLNL researchers describe the development of a deep learning-driven Manifold & Cyclically Consistent (MaCC) surrogate model incorporating a multi-modal neural network capable of quickly and accurately emulating complex scientific processes, including the high-energy density physics involved in ICF.

The research team applied the model to ICF implosions performed at the National Ignition Facility (NIF), in which a computationally expensive numerical simulator is used to predict the energy yield of a target imploded by shock waves produced by the facility’s high-energy laser. Comparing the results of the neural network-backed surrogate to the existing simulator, the researchers found the surrogate could adequately replicate the simulator, and significantly outperformed the current state-of-the-art in surrogate models across a wide range of metrics.

“One major question we were dealing with was ‘how do we start using machine learning when you have a lot of different kinds of data?’ ” said LLNL computer scientist and lead author Rushil Anirudh. “What we proposed was making the problem simpler by finding a common space where all these modalities, such as high pressure or temperature, live and do the analysis within that space. We’re saying that deep learning can capture the important relationships between all these different data sources and give us a compact representation for all of them.

“The nice thing about doing all this is not only that it makes the analysis easier, because now you have a common space for all these modalities, but we also showed that doing it this way actually gives you better models, better analysis and objectively better results than with baseline approaches,” Anirudh added.

Simulations that would normally take a numerical simulator a half-hour to run could be done equally as well within a fraction of a second using neural networks, Anirudh explained. Perhaps even more valuable than saving compute time, explained computer scientist and co-author Timo Bremer, is the demonstrated ability of the deep learning surrogate model to analyze a large volume of complex, high-dimensional data in the ICF test case, which has implications for stockpile modernization efforts. The results indicate the approach could lead to new scientific discoveries and a completely novel class of techniques for performing and analyzing simulations, Bremer said.

This is particularly important at NIF, Bremer explained, where scientists do not yet fully understand why discrepancies exist between simulations and experiments. In the future, deep learning models could elicit capabilities that didn’t exist before and provide a way for scientists to analyze the massive amounts of X-ray images, sensor data and other information collected from diagnostics of each NIF shot, including data that has not been incorporated because there is too much of it to be analyzed by humans alone, Bremer said.

“This tool is providing us with a fundamentally different way of connecting simulations to experiments,” Bremer said. “By building these deep learning models, it allows us to directly predict the full complexity of the simulation data. Using this common latent space to correlate all these different modalities and different diagnostics, and using that space to connect experiments to simulations, is going to be extremely valuable, not just for this particular piece of science, but everything that tries to combine computational sciences with experimental sciences. This is something that could potentially lead to new insights in a way that’s just unfeasible right now.”

Comparing the results of predictions made by the surrogate model to the simulator typically used for ICF experiments, the researchers found the MaCC surrogate was nearly indistinguishable from the simulator in errors and expected quantities of energy yield and more accurate than other types of surrogate models. Researchers said the key to the MaCC model’s success was the coupling of forward and inverse models and training them on data together. The surrogate model used data inputs to make predictions, and those predictions were run through an inverse model to estimate, from the outputs, what the inputs might have been. During training, the surrogate’s neural networks learned to be compatible with the inverse models, meaning that errors did not accumulate as much as they would have before, Anirudh said.

“We were exploring this notion of self-consistency,” Anirudh explained. “We found that including the inverse problem into the surrogate modeling process is actually essential. It makes the problem more data-efficient and slightly more robust. When you put these two pieces together, the inverse model and the common space for all the modalities, you get this grand surrogate model that has all these other desirable properties — it is more efficient and better with less amount of data, and it’s also resilient to sampling artifacts.”

The team said the benefit of machine learning-based surrogates is that they can speed up extremely complex calculations and compare varied data sources efficiently without requiring a scientist to scan tremendous amounts of data. As simulators become increasingly complex, producing even more data, such surrogate models will become a fundamental complementary tool for scientific discovery, researchers said.

“The tools we built will be useful even as the simulation becomes more complex,” said computer scientist and co-author Jayaraman Thiagarajan. “Tomorrow we will get new computing power, bigger supercomputers and more accurate calculations, and these techniques will still hold true. We are surprisingly finding that you can produce very powerful emulators for the underlying complex simulations, and that’s where this becomes very important.

‘As long as you can approximate the underlying science using a mathematical model, the speed at which we can explore the space becomes really, really fast,” Thiagarajan continued. “That will hopefully help us in the future to make scientific discoveries even quicker and more effectively. We believe that even though we used it for this particular application, this approach is broadly applicable to the general umbrella of science.”

Researchers said the MaCC surrogate model could be adapted for any future change in modality, new types of sensors or imaging techniques. Because of its flexibility and accuracy, the model and its deep learning approach, referred to at LLNL as “cognitive simulation” or simply CogSim, is being applied to a number of other projects within the Laboratory and is transitioning over to programmatic work, including efforts in uncertainty quantification, weapons physics design, magnetic confinement fusion and other laser projects.

MaCC is a key product of the Lab’s broader Cognitive Simulation Director’s Initiative, led by principal investigator and LLNL physicist Brian Spears and funded through the Laboratory Directed Research and Development (LDRD) program. The initiative aims to advance a wide range of AI technologies and computational platforms specifically designed to improve scientific predictions by more effectively coupling precision simulation with experimental data. By focusing on both the needs in critical mission spaces and the opportunities presented by AI and compute advances, the initiative has helped further LLNL’s lead in using AI for science.

“MaCC’s ability to combine multiple, scientifically relevant data streams opens the door for a wide range of new analyses,” Spears said. “It will allow us to extract information from our most valuable and mission-critical experimental and simulation data sets that has been inaccessible until now. Fully exploiting this information in concert with a new suite of related CogSim tools will lead quickly and directly to improved predictive models.”

The research team has made their data publicly available on the web.


Source: Lawrence Livermore National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New GE Simulations on Summit to Advance Offshore Wind Power

August 6, 2020

The wind energy sector is a frequent user of high-power simulations, with researchers aiming to optimize wind flows and energy production from the massive turbines. Now, researchers at GE are preparing to undertake a lar Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community and their demand for high compute power in low precision for Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implement a neural network (NN). Their novel architecture, reporte Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing the pinnacle of HPE's HPC portfolio. After announcing its i Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the increasingly important goals of data best practices and work Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated, analysts said the acquisition would cement Nvidia’s stat Read more…

By George Leopold

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

PEARC20 Plenary Introduces Five Upcoming NSF-Funded HPC Systems

July 30, 2020

Five new HPC systems—three National Science Foundation-funded “Capacity” systems and two “Innovative Prototype/Testbed” systems—will be coming onlin Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Dominates Latest MLPerf Training Benchmark Results

July 29, 2020

MLPerf.org released its third round of training benchmark (v0.7) results today and Nvidia again dominated, claiming 16 new records. Meanwhile, Google provided e Read more…

By John Russell

$39 Billion Worldwide HPC Market Faces 3.7% COVID-related Drop in 2020

July 29, 2020

Global HPC market revenue reached $39 billion in 2019, growing a healthy 8.2 percent over 2018, according to the latest analysis from Intersect360 Research. A 3 Read more…

By Tiffany Trader

Agenting Change: PEARC20 Keynote Encourages Cultural Change to Make Tech Better, More Diverse

July 29, 2020

The tech world will need to become more diverse if it is to thrive and survive, said Cherri Pancake, director of the Northwest Alliance for Computational Resear Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This