Deep Learning-Based Surrogate Models Outperform Simulators and Could Hasten Scientific Discoveries

June 18, 2020

June 18, 2020 — Surrogate models supported by neural networks can perform as well, and in some ways better, than computationally expensive simulators and could lead to new insights in complicated physics problems such as inertial confinement fusion (ICF), Lawrence Livermore National Laboratory (LLNL) scientists reported.

Lawrence Livermore researchers are integrating technologies such as the Sierra supercomputer (left) and the National Ignition Facility (NIF) (right) to understand complex problems like fusion in energy and the aging effects in nuclear weapons. Data from NIF experiments (inset, right) and simulation (inset, left) are being combined with deep learning methods to improve areas important to national security and our future energy sector. Illustration by Tanya Quijalvo/LLNL.

In a paper published by the Proceedings of the National Academy of Sciences (PNAS), LLNL researchers describe the development of a deep learning-driven Manifold & Cyclically Consistent (MaCC) surrogate model incorporating a multi-modal neural network capable of quickly and accurately emulating complex scientific processes, including the high-energy density physics involved in ICF.

The research team applied the model to ICF implosions performed at the National Ignition Facility (NIF), in which a computationally expensive numerical simulator is used to predict the energy yield of a target imploded by shock waves produced by the facility’s high-energy laser. Comparing the results of the neural network-backed surrogate to the existing simulator, the researchers found the surrogate could adequately replicate the simulator, and significantly outperformed the current state-of-the-art in surrogate models across a wide range of metrics.

“One major question we were dealing with was ‘how do we start using machine learning when you have a lot of different kinds of data?’ ” said LLNL computer scientist and lead author Rushil Anirudh. “What we proposed was making the problem simpler by finding a common space where all these modalities, such as high pressure or temperature, live and do the analysis within that space. We’re saying that deep learning can capture the important relationships between all these different data sources and give us a compact representation for all of them.

“The nice thing about doing all this is not only that it makes the analysis easier, because now you have a common space for all these modalities, but we also showed that doing it this way actually gives you better models, better analysis and objectively better results than with baseline approaches,” Anirudh added.

Simulations that would normally take a numerical simulator a half-hour to run could be done equally as well within a fraction of a second using neural networks, Anirudh explained. Perhaps even more valuable than saving compute time, explained computer scientist and co-author Timo Bremer, is the demonstrated ability of the deep learning surrogate model to analyze a large volume of complex, high-dimensional data in the ICF test case, which has implications for stockpile modernization efforts. The results indicate the approach could lead to new scientific discoveries and a completely novel class of techniques for performing and analyzing simulations, Bremer said.

This is particularly important at NIF, Bremer explained, where scientists do not yet fully understand why discrepancies exist between simulations and experiments. In the future, deep learning models could elicit capabilities that didn’t exist before and provide a way for scientists to analyze the massive amounts of X-ray images, sensor data and other information collected from diagnostics of each NIF shot, including data that has not been incorporated because there is too much of it to be analyzed by humans alone, Bremer said.

“This tool is providing us with a fundamentally different way of connecting simulations to experiments,” Bremer said. “By building these deep learning models, it allows us to directly predict the full complexity of the simulation data. Using this common latent space to correlate all these different modalities and different diagnostics, and using that space to connect experiments to simulations, is going to be extremely valuable, not just for this particular piece of science, but everything that tries to combine computational sciences with experimental sciences. This is something that could potentially lead to new insights in a way that’s just unfeasible right now.”

Comparing the results of predictions made by the surrogate model to the simulator typically used for ICF experiments, the researchers found the MaCC surrogate was nearly indistinguishable from the simulator in errors and expected quantities of energy yield and more accurate than other types of surrogate models. Researchers said the key to the MaCC model’s success was the coupling of forward and inverse models and training them on data together. The surrogate model used data inputs to make predictions, and those predictions were run through an inverse model to estimate, from the outputs, what the inputs might have been. During training, the surrogate’s neural networks learned to be compatible with the inverse models, meaning that errors did not accumulate as much as they would have before, Anirudh said.

“We were exploring this notion of self-consistency,” Anirudh explained. “We found that including the inverse problem into the surrogate modeling process is actually essential. It makes the problem more data-efficient and slightly more robust. When you put these two pieces together, the inverse model and the common space for all the modalities, you get this grand surrogate model that has all these other desirable properties — it is more efficient and better with less amount of data, and it’s also resilient to sampling artifacts.”

The team said the benefit of machine learning-based surrogates is that they can speed up extremely complex calculations and compare varied data sources efficiently without requiring a scientist to scan tremendous amounts of data. As simulators become increasingly complex, producing even more data, such surrogate models will become a fundamental complementary tool for scientific discovery, researchers said.

“The tools we built will be useful even as the simulation becomes more complex,” said computer scientist and co-author Jayaraman Thiagarajan. “Tomorrow we will get new computing power, bigger supercomputers and more accurate calculations, and these techniques will still hold true. We are surprisingly finding that you can produce very powerful emulators for the underlying complex simulations, and that’s where this becomes very important.

‘As long as you can approximate the underlying science using a mathematical model, the speed at which we can explore the space becomes really, really fast,” Thiagarajan continued. “That will hopefully help us in the future to make scientific discoveries even quicker and more effectively. We believe that even though we used it for this particular application, this approach is broadly applicable to the general umbrella of science.”

Researchers said the MaCC surrogate model could be adapted for any future change in modality, new types of sensors or imaging techniques. Because of its flexibility and accuracy, the model and its deep learning approach, referred to at LLNL as “cognitive simulation” or simply CogSim, is being applied to a number of other projects within the Laboratory and is transitioning over to programmatic work, including efforts in uncertainty quantification, weapons physics design, magnetic confinement fusion and other laser projects.

MaCC is a key product of the Lab’s broader Cognitive Simulation Director’s Initiative, led by principal investigator and LLNL physicist Brian Spears and funded through the Laboratory Directed Research and Development (LDRD) program. The initiative aims to advance a wide range of AI technologies and computational platforms specifically designed to improve scientific predictions by more effectively coupling precision simulation with experimental data. By focusing on both the needs in critical mission spaces and the opportunities presented by AI and compute advances, the initiative has helped further LLNL’s lead in using AI for science.

“MaCC’s ability to combine multiple, scientifically relevant data streams opens the door for a wide range of new analyses,” Spears said. “It will allow us to extract information from our most valuable and mission-critical experimental and simulation data sets that has been inaccessible until now. Fully exploiting this information in concert with a new suite of related CogSim tools will lead quickly and directly to improved predictive models.”

The research team has made their data publicly available on the web.


Source: Lawrence Livermore National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire