Department of Energy Awards Fermilab $3.5M for Quantum Science

August 28, 2019

August 28, 2019 — The U.S. Department of Energy has awarded researchers at its Fermi National Accelerator Laboratory more than $3.5 million to boost research in the fast-emerging field of Quantum Information Science.

“Few pursuits have the revolutionary potential that quantum science presents,” said Fermilab Chief Research Officer Joe Lykken. “Fermilab’s expertise in quantum physics and cryogenic engineering is world-class, and combined with our experience in conventional computing and networks, we can advance quantum science in directions that not many other places can.”

As part of a number of grants to national laboratories and universities offered through its Quantum Information Science-Enabled Discovery (QuantISED) program, DOE’s recent round of funding to Fermilab covers three initiatives related to quantum science. It also funds Fermilab’s participation in a fourth initiative led by Argonne National Laboratory.

For a half-century, Fermilab researchers have closely studied the quantum realm and provided the computational and engineering capabilties needed to zoom in on nature at its most fundamental level. The projects announced by the Department of Energy will build on those capabilities, pushing quantum science and technology forward and leading to new discoveries that will enhance our picture of the universe at its smallest scale.

“Fermilab is well-versed in engineering, algorithmic development and recruiting massive computational resources to explore quantum-scale phenomena,” said Fermilab Head of Quantum Science Panagiotis Spentzouris. “Now we’re wrangling those competencies and capabilities to advance quantum science in many areas, and in a way that only a leading physics laboratory could.”

The Fermilab-led initiatives funded through these DOE QuantISED grants are:

Large Scale Simulations of Quantum Systems on High-Performance Computing with Analytics for High-Energy Physics Algorithms
Lead principal investigator: Adam Lyon, Fermilab

The large-scale simulation of quantum computers has plenty in common with simulations in high-energy physics: Both must sweep over a large number of variables. Both organize their inputs and outputs similarly. And in both cases, the simulation has to be analyzed and consolidated into results. Fermilab scientists, in collaboration with scientists at Argonne National Laboratory, will use tools from high-energy physics to produce and analyze simulations using high-performance computers at the Argonne Leadership Computing Facility. Specifically, they will simulate the operation of a qubit device that uses superconducting cavities (which are also used as components in particle accelerators) to maintain quantum information over a relatively long time. Their results will determine the device’s impact on high-energy physics algorithms using an Argonne-developed quantum simulator.

Partner institution: Argonne National Laboratory

Research Technology for Quantum Information Systems
Lead principal investigator: Gustavo Cancelo, Fermilab

One of the main challenges in quantum information science is designing an architecture that solves problems of massive interconnection, massive data processing and heat load. The electronics must be able to operate and interface with other electronics operating both at 4 kelvins and at near absolute zero. Fermilab scientists and engineers are designing novel electronic circuits as well as massive control and readout electronics to be compatible with quantum devices, such as sensors and quantum qubits. These circuits will enable many applications in the quantum information science field.

Partner institutions: Argonne National Laboratory, Massachusetts Institute of Technology, University of Chicago

MAGIS-100 – co-led by Stanford University and Fermilab
Lead Fermilab principal investigator: Rob Plunkett

Fermilab will host a new experiment to test quantum mechanics on macroscopic scales of space and time. Scientists on the MAGIS-100 experiment will drop clouds of ultracold atoms down a 100-meter-long vacuum pipe on the Fermilab site, and use a stable laser to create an atom interferometer which will look for dark matter made of ultralightweight particles. They will also advance a technique for gravitational-wave detection at relatively low frequencies.

This is a joint venture under the collaboration leadership of Stanford University Professor Jason Hogan, who is funded by grant GBMF7945 from the Gordon and Betty Moore Foundation. Rob Plunkett of Fermilab serves as the project manager.

Other participating institutions: Northern Illinois University, Northwestern University, Stanford University, Johns Hopkins University, University of Liverpool

Fermilab was also funded to participate in another initiative led by Argonne National Laboratory:

Quantum Sensors for Wide Band Axion Dark Matter Detection
Lead principal investigator: Peter Barry, Argonne

Researchers are searching high and low for dark matter, the mysterious substance that makes up a quarter of our universe. One theory proposes that it could be made of particles called axions, which would signal their presence by converting into particles of light, called photons. Fermilab researchers are part of a team developing specialized detectors that look for photons in the terahertz range — at frequencies just below the infrared. The development of these detectors will widen the range of frequencies where axions may be discovered. To bring the faint signals to the fore, the team is using supersensitive quantum amplifiers.

Other participating institutions: National Institute of Standards and Technology, University of Colorado


Source: Leah Hesla, Fermilab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire