DOE Awards Argonne $4.15M for Research in Quantum Computing and Networking

September 20, 2019

September 20, 2019 — The U.S. Department of Energy’s (DOE) Argonne National Laboratory was recently awarded a total of $4.15 million for research in quantum computing and networking as part of the 2019 Advanced Scientific Computing Research (ASCR) Quantum Computing and Quantum Network Awards. The awards will fund three multi-year projects in an effort to secure the nation’s leadership in the field of quantum information science.

A multimodal landscape arising in the quantum approximation optimization algorithm. Dots show points evaluated by a multistart optimizer, which is better suited for finding good optima for this problem than classical methods. Developing specialized methods for such problems will be a part of FAR-QC. (Image courtesy of Ruslan Shaydulin, Ilya Safro and Jeffrey Larson. Multistart methods for quantum approximate optimization. To appear in: Proceedings of the IEEE High Performance Extreme Computing Conference. 2019. URL: https://arxiv.org/abs/1905.08768.)

The three projects aim to advance the development of quantum computing and networking, from quantum-driven algorithms, programming languages, compilers and debugging approaches to metropolitan-scale quantum networks that take advantage of existing fiber optic connections.

Scientists from Argonne’s Mathematics and Computer Science (MCS) division and Computing, Environment and Life Sciences (CELS) directorate will participate in two of the projects in ASCR’s Accelerated Research in Quantum Computing (ARQC) category. One of the projects, titled ​Fundamental Algorithmic Research for Quantum Computing (FAR-QC),” is a multi-disciplinary collaboration between the national laboratories, academia and industry that aims to better understand the significance of the potential impact of quantum computing.

Leveraging the power of quantum mechanics, quantum computers offer potentially game-changing advantages over classical computers. However, scientists are still developing quantum computing technology, and the magnitude of the potential advantage of quantum computing is still unknown.

We are on the threshold of a new era in quantum information science and quantum computing and networking, with potentially great promise for science and society. These projects will help ensure U.S. leadership in these important new areas of science and technology,” said Paul Dabbar, Under Secretary for Science.

Using quantum systems for computing is a promising thought,” said computational mathematician Jeffrey Larson of Argonne’s MCS division, who is a leader on the project. ​To prove these systems can surpass the capabilities of classical computers for certain DOE-relevant problems requires researchers from diverse scientific backgrounds, including Argonne’s optimization expertise.”

The FAR-QC team of physicists, applied mathematicians, quantum information scientists and computer scientists will develop quantum, classical and hybrid algorithms to advance quantum computing capabilities in quantum simulation, optimization and machine learning. These algorithms will serve as a template for future quantum technologies. In addition, the scientists will analyze the performance of quantum simulated systems to characterize the advantages that quantum algorithms could ultimately realize.

Altogether, the five-year project will receive $19.5 million, with $1.3 million going to Argonne specifically.

Scientists from Argonne’s CELS directorate will also receive funding from the ARQC category for a project titled ​Advancing Integrated Development Environments for Quantum Computing through Fundamental Research (AIDE-QC).” The team, consisting of five DOE laboratories and the University of Chicago, will develop open-source computing, programming and simulation environments that support the diversity of quantum computing research at DOE.

We are entering an era of quantum computing where the available devices are noisy intermediate-scale quantum (NISQ) devices,” said Stefan Wild, MCS deputy division director and a scientist on the project. ​The devices will be able to perform tasks that classical computers can’t, but they won’t be capable of full-fledged, unhindered quantum computing. We need to develop techniques to handle this critical, transitional time of scientific exploration.”

Argonne will use the expertise of its scientists to address critical aspects of computer science research that accelerate the integration of NISQ devices, including high-level programming languages, novel error-mitigation techniques for near- and mid-term hardware devices, leading-edge platform-agnostic compilers and tools for validation, verification and debugging.

Classical information comes in the form of bits, and quantum information comes in qubits, which computers handle in significantly different ways. ​The increasing number of qubits on emerging computer chips presents an exciting opportunity to develop scalable quantum circuit compilation techniques and to test them on cutting-edge hardware,” said Argonne’s computer scientist Martin Suchara, a member of the AIDE-QC team who specializes in quantum computing.

AIDE-QC will receive over $18.6 million; around $2.4 million of that will go to Argonne. The laboratory’s participation in both AIDE-QC and FAR-QC is sure to enhance collaboration across the newly established projects.

Finally, scientists from Argonne’s CELS directorate will participate in a project, titled ​Illinois-Express Quantum Network (IEQNET),” funded by the DOE ASCR Transparent Optical Quantum Networks for Distributed Science program. The project team, led by scientists at DOE’s Fermilab, plans to develop and demonstrate a metropolitan-scale, quantum-classical hybrid network with nodes at Argonne, Fermilab, and Northwestern University and in downtown Chicago.

Scientists have previously demonstrated point-to-point quantum communication over short distances in fiber optic cables (on the order of 10 miles) and long distances using free space optics, but IEQNET’s goal is to demonstrate a multi-node fiber optic quantum network that supports multiple users and co-exists with classical networks.

We want to utilize existing links because we have significant infrastructure that has already been laid for classical communication,” said Rajkumar Kettimuthu, an Argonne scientist on the study. ​The challenge will be to achieve classical and quantum coexistence in the same fibers.”

The program funds five projects — involving national laboratories, universities and industry —  that will develop complementary technology over the next four years. The total grant is for $3.2 million, and Argonne will receive $400,000. The applications of large-scale quantum networks include better detection of earthquakes and gravitational waves, as well as better synchronization of atomic clocks and arrays of research devices for many scientific fields.

We are on the threshold of a new era in quantum information science and quantum computing and networking, with potentially great promise for science and society,” said Under Secretary for Science Paul Dabbar in a news release announcing the funding awards. ​These projects will help ensure U.S. leadership in these important new areas of science and technology.”

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About the U.S. Department of Energy’s Office of Science

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.


Source: Savannah Mitchum, Argonne National Laboratory 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire