Early Science Projects for Aurora Supercomputer Announced

January 30, 2017

LEMONT, Ill., Jan. 30 — The Argonne Leadership Computing Facility (ALCF), a Department of Energy Office of Science User Facility, has selected 10 computational science and engineering research projects for its Aurora Early Science Program starting this month. Aurora, a massively parallel, manycore Intel-Cray supercomputer, will be ALCF’s next leadership-class computing resource and is expected to arrive in 2018.

The 10 investigator-led projects originate from universities and national laboratories from across the country and span a wide range of disciplines. Collectively, these projects represent a typical system workload at the ALCF and cover key scientific areas and numerical methods. The teams will receive hands-on assistance to port and optimize their applications for the new architecture using systems available today.

The Early Science Program helps lay the path for hundreds of other users by doing actual science, using real scientific applications, to ready a future machine. “As with any bleeding edge resource, there’s testing and debugging that has to be done,” said ALCF Director of Science Katherine Riley. “And we are doing that with science.”

The Aurora Early Science Program follows in the ALCF tradition of delivering science on day one. Early Science programs also helped usher in earlier ALCF computers, including Theta, an Intel-Cray system that came online last year, and Mira, an IBM Blue Gene/Q. Both machines continue to serve the scientific research community today. Aurora, a future system based on Intel’s third-generation Xeon Phi processor, called Knights Hill (KNH) and second-generation OmniPath interconnect, and Cray’s Shasta platform, is expected to deliver at least 20 times the computational performance of Mira.

For the next couple of years, ALCF will host numerous training events to help the Aurora Early Science project teams and the computational community prepare their codes for the architecture and scale of the coming system, with assistance from Intel and Cray. Each Early Science team is also paired with a dedicated postdoctoral researcher from the ALCF.

The Early Science teams will use Theta, a 9.65 petaflops system based on Intel’s second-generation Xeon Phi processor and Cray’s Aries interconnect. “The Theta system is well suited for targeting KNH as well as non-hardware-specific development work, such as new algorithms or physics modules needed for the proposed early science runs,” said Tim Williams, an ALCF computational scientist who manages the Early Science Program.

In addition, the project teams will have access to training and hardware at the DOE’s Oak Ridge Leadership Computing Facility and DOE’s National Energy Research Supercomputing Center as alternative development platforms to encourage application code portability among heterogeneous architectures.


Extending Moore’s Law computing with quantum Monte Carlo
Investigator: Anouar Benali, Argonne National Laboratory

For decades, massively parallel supercomputers have reaped the benefits—predicted by Moore’s Law—of the relentless increase in density of components on chips that also rapidly improved performance of PCs and smartphones. This project aims to give something back, by attacking a fundamental materials problem impacting the latest and future chips: electrical current leakage through HfO2-silicon interface. HfO2 is used widely as a dielectric in Si-CMOS chips like the Aurora CPUs. Simulating this problem with the highly accurate quantum Monte Carlo (QMC) method is only now becoming computationally possible with supercomputers like Aurora.

Design and evaluation of high-efficiency boilers for energy production using a hierarchical V/UQ approach
Investigator: Martin Berzins, The University of Utah

This project will simulate and evaluate the design of a next-generation, 500-megawatt advanced ultra supercritical coal boiler. In a coal-fired power plant, this design promises to reduce the boiler footprint 50%, saving costs and improving efficiency (53% efficiency, compared with traditional-boiler 35% efficiency), and also reducing CO2 emissions by 50% relative to a traditional boiler. Simulations on Aurora using the Uintah asynchronous many-task software will incorporate validation and uncertainty quantification (V/UQ), predicting thermal efficiency with uncertainty bounds constrained by observed data.

High-fidelity simulation of fusion reactor boundary plasmas
Investigator: C. S. Chang, Princeton Plasma Physics Laboratory

The behavior of plasma at the outer edge of a tokamak fusion reactor is critically important to success of future fusion reactors such as ITER, now under construction in France. Misbehavior at the edge can lead to disruptions bombarding a small area of the divertor plates—metal structures at the bottom of the tokamak designed to absorb ejected heat—at levels beyond which the divertor material can withstand. This project will use particle simulations of the plasma, including impurities and the important magnetic field geometry at the edge, to predict behavior of ITER plasmas and to help guide future experimental parameters.

NWChemEx: Tackling chemical, materials and biochemical challenges in the exascale era
Investigator: Thomas Dunning, Pacific Northwest National Laboratory

The NWChemEx code is providing the framework for next-generation molecular modeling in computational chemistry and for implementing critical computational chemistry methods. This project will apply it to two problems in development of advanced biofuels: design of feedstock for efficient production of biomass; and design of new catalysts for converting biomass-derived chemicals into fuels.

Extreme-scale cosmological hydrodynamics
Investigator: Katrin Heitmann, Argonne National Laboratory

This project will simulate large fractions of the universe, including not only gravity acting on dark matter, but also baryons (which make up visible matter such as stars), and gas dynamics using a new, smoothed particle hydrodynamics method. These simulations are deeply coupled with guiding and interpreting observations from present and near-future cosmological surveys.

Extreme-scale unstructured adaptive CFD
Investigator: Kenneth Jansen, University of Colorado at Boulder

This project will use unprecedented high-resolution fluid dynamics simulations to model dynamic flow control over airfoil surfaces at realistic flight conditions and to model bubbly flow of coolant in nuclear reactors. Synthetic jet actuators, tiny cavities with speaker-like diaphragms that alternately expel and intake air, can alter and control airflow across surfaces such as plane tail rudders, allowing much stronger force (turning force, for a rudder). The reactor fluid flow problems will simulate realistic reactor geometries with far more accurate multiphase flow modeling than today’s state of the art, yielding valuable information on thermal management to improve safety of existing light-water reactors and inform the design of next-generation systems.

Benchmark simulations of shock-variable density turbulence and shock-boundary layer interactions with applications to engineering modeling
Investigator: Sanjiva Lele, Stanford University

What do inertial confinement fusion (ICF) and supersonic aircraft have in common? Both involve the flow of gases in extreme conditions, including shock waves and turbulence. This project aims to advance scientific understanding of variable density turbulence and mixing, including shock interactions and near-wall effects. These apply to the mixing of the fuel capsule surface with the imploding plasma in ICF, and shock interaction with fuel streams in a supersonic jet engine as a way to improve combustion.

Lattice quantum chromodynamics calculations for particle and nuclear physics
Investigator: Paul Mackenzie, Fermilab

This project will deliver calculations urgently needed by experimental programs of high energy and nuclear physics, based on the computational methods of lattice quantum chromodynamics (lattice QCD). QCD embodies our most fundamental understanding of the strong nuclear force and associated particles, a key component of the more general Standard Model of particle physics. In high energy physics, lattice calculations are required to extract the fundamental parameters of the standard model (such as quark masses) from experiment. Evidence for physics beyond the Standard Model can be discovered if discrepancies are found between different methods for determining these parameters.

Metascalable layered materials genome
Investigator: Aiichiro Nakano, University of Southern California

Functional materials, as the name implies, have behaviors useful in science and industry. There is great interest today in engineering materials to have desired behaviors. One approach involves stacking extremely thin layers of different materials to achieve a complex molecular interplay throughout the stack. The resulting behavior of the stack cannot be explained by traditional theories and can only be predicted by directly simulating the layers as collections of molecules interacting with each other. Massive quantum mechanical and reactive molecular dynamics simulations on Aurora will be validated by experiments on the same materials using a free-electron X-ray laser.

Free energy landscapes of membrane transport proteins
Investigator: Benoit Roux, The University of Chicago

Membrane transport protein molecules play key roles in cellular biology functions. This includes natural processes as well as drug delivery and drug resistance. How these “molecular devices” perform their function is extremely complex. The proteins move into dramatically different conformations in the process. Modeling the myriad possibilities with atomistic molecular dynamics, even using the best statistical approaches, is at the forefront of what’s possible. These calculations on Aurora will advance that front.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

Source: Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

U.S. CTO Michael Kratsios Adds DoD Research & Engineering Title

July 13, 2020

Michael Kratsios, the U.S. Chief Technology Officer, has been appointed acting Undersecretary of Defense for research and engineering. He replaces Mike Griffin, who along with his deputy Lis Porter, stepped down last wee Read more…

By John Russell

Supercomputer Research Reveals Star Cluster Born Outside Our Galaxy

July 11, 2020

The Milky Way is our galactic home, containing our solar system and continuing into a giant band of densely packed stars that stretches across clear night skies around the world – but, it turns out, not all of those st Read more…

By Oliver Peckham

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprised of Intel Xeon processors and Nvidia A100 GPUs, and featuri Read more…

By Tiffany Trader

Xilinx Announces First Adaptive Computing Challenge

July 9, 2020

A new contest is challenging the computing world. Xilinx has announced the first Xilinx Adaptive Computing Challenge, a competition that will task developers and startups with finding creative workload acceleration solutions. Xilinx is running the Adaptive Computing Challenge in partnership with Hackster.io, a developing community... Read more…

By Staff report

Reviving Moore’s Law? LBNL Researchers See Promise in Heterostructure Oxides

July 9, 2020

The reality of Moore’s law’s decline is no longer doubted for good empirical reasons. That said, never say never. Recent work by Lawrence Berkeley National Laboratory researchers suggests heterostructure oxides may b Read more…

By John Russell

AWS Solution Channel

Best Practices for Running Computational Fluid Dynamics (CFD) Workloads on AWS

The scalable nature and variable demand of CFD workloads makes them well-suited for a cloud computing environment. Many of the AWS instance types, such as the compute family instance types, are designed to include support for this type of workload.  Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: 1) Industries of the Future (IotF), chaired be Dario Gil (d Read more…

By John Russell

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers


Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This