ECP Application Will Deliver ‘Molecular Movies’ in Minutes

September 13, 2022

Sept. 13, 2022 — Amedeo Perazzo has a guarantee for researchers who want to see a movie of molecular behavior: You can have data in 10 minutes.

Amedeo Perazzo of the SLAC National Accelerator Laboratory is ECP ExaFEL subproject principal investigator.

Perazzo leads a team at the SLAC National Accelerator Laboratory to analyze the data generated by the Linac Coherent Light Source (LCLS). LCLS—an Office of Science User Facility operated for the US Department of Energy (DOE) by Stanford University—boasts an x-ray free-electron laser that produces 1 million pulses per second, each pulse lasting just quadrillionths of a second for the brightest x-ray images possible.

Using LCLS’s capability to image individual atoms at such a high speed, Perazzo looks forward to accessing data for analysis in a matter of minutes, not several weeks, as it does now.

Having complex data so quickly available for researchers is among the promises of exascale computing. Perazzo is principal investigator of a DOE Exascale Computing Project (ECP) subproject called ExaFEL, providing code for x-ray laser data that could benefit a wide variety of research areas.

“Exascale computing allows us to process many more events in a much shorter amount of time,” Perazzo said. “We will be able to provide feedback in minutes, and researchers won’t have to wait. If you’re a researcher who needs to see how atoms behave, that’s a big benefit.”

Faster and Better Insight

In addition to doing things faster, exascale computing also allows scientists to “get better insight into data we’re collecting. This leads to better science,” said Perazzo, Controls and Data Systems Division director in the Technology and Innovation Directorate at SLAC. “Fast turnaround is necessary, and exascale will get us there. So exascale gives us more events faster, and better analysis and insight.”

An example of how ExaFEL on exascale computers will provide better insight into data is its ability to significantly enhance the atomic detail of the reconstruction. It accomplishes this by correcting the diffraction images for the actual beam spectral shape and for the crystal mosaic texture. This capability also provides the ability to determine a molecule’s dynamics in addition to its average electron density.

SLAC’s LCLS generates photons through a series of extremely quick pulses in a process called x-ray lasing. Through another process known as x-ray diffraction, those short pulses allow researchers to take a snapshot of what’s happening before the atoms are destroyed by the x-ray (known as diffraction-before-destruction).

“If it takes weeks to complete the image reconstruction, the researchers are flying blind; they don’t know what their data look like. Now we will be able to show them,” Perazzo said.

Light Source a Powerful Tool for Atomic Imaging

X-ray lasers are powerful tools that provide glimpses into fundamental processes in nature at the atomic level, providing images of smaller particles of matter and extremely short time scales more than any other procedure. Researchers across the science spectrum use them to elucidate how atoms behave and move, with essentially what amounts to stop-time movies provided by the x-ray pulses. Similar to the effect a strobe light has on dancers, x-ray lasers can create a moving picture of atoms and molecules.

However, producing such a picture takes an enormous amount of data—millions of gigabytes of disk space. Scientists estimate data flow will exceed a trillion data bits per second and will require petabytes of online storage—far beyond what is currently available without exascale-level computing. Analyzing such a volume of data in real time is a challenge that exascale computing helps overcome.

The light source essentially replaces a camera lens with a supercomputer. Diffraction records are unreadable until they record hundreds of thousands of images. Only then can the data show what the researchers need for their applications.

“The only way to make a system look like a camera, where you are seeing exactly what is happening, is having a computer reconstruction as fast as possible,” Perazzo said. “The faster we go, the more computing power we need.”

The LCLS is being upgraded in fall 2022 and will operate at 1 MHz, or 1 million pulses per second. This high rate will require an ability to process massive amounts of data quickly, a need that only exascale computing resources can meet.

Technique Could Benefit Many Industries

The ExaFEL technique focuses on nanocrystallography and single-particle imaging. These techniques can be used in studying chemical reactions, biological processes, how chemical bonds form, and other materials research. The algorithms required are so complex and the molecular images so numerous that only high-performance supercomputers can handle them.

But ExaFEL will benefit many other experimental techniques, Perazzo said. “The framework itself, the ability to scale the computation, the automation aspects, what we learn in ExaFEL for ECP, can all be used in other experiments besides the techniques we are focused on,” he said.

Indeed, one key activity is moving data off the network to the supercomputer. Data must move as quickly as possible so that analysis can begin as soon as possible. Materials science, biology—analyzing viruses such as the one that causes COVID-19—chemistry, and other scientific disciplines can benefit from LCLS data using exascale computing.

By imaging down to single nanoscale particles, and in understanding timescales of chemical reactions in real time, x-ray lasers represent a new scientific frontier when coupled with the right computing power. Nanoscale particles have at least one critical dimension less than 100 nanometers and possess unique optical, magnetic, or electrical properties. Atoms, molecules, living cells, and particulate are all examples of matter at the nanoscale.

Single-particle imaging could enable scientists to develop new drugs to fight disease, components for next-generation computers, new damage-resistant aircraft materials, and customizable chemical reactions for clean and renewable sources of energy, to name a few potential benefits of ExaFEL.

Scaling Challenges Met

Some of the challenges the team has surmounted include porting their codes to the GPUs, which provide most of the computing power of upcoming exascale machines; scaling these codes to millions of cores; and developing more sophisticated algorithms that handle realistic beam conditions and departure of the material structure from that of a perfectly regular lattice.

At DOE’s Oak Ridge National Laboratory, Frontier recently became the first supercomputer to breach the exascale barrier, boasting 1.1 exaflops of performance and exceeding the target threshold of a quintillion calculations per second. The system will enable researchers to develop critically needed technologies for the country’s energy, economic, and national security missions, helping address problems of critical importance to the nation that lacked realistic solutions as recently as five years ago.

With a PhD in particle physics from the University of Pavia, Italy, Perazzo did postdoctoral research at another US DOE national laboratory, Lawrence Berkeley National Laboratory. He started at SLAC as a software engineer, working on BaBar, ATLAS, and the Gamma Ray Large Area Space Telescope before joining LCLS. An avid soccer fan and player, he and his wife have two boys, and they enjoy the San Francisco Bay area and all that the region offers. “You can go from the ocean to skiing and everything in between all in a short amount of time,” he said. “It’s wonderful.”

Perazzo is excited about the scientific possibilities exascale enables.

“We’re in the right place at the right time,” he said. “Computing culture is critical now, and science will benefit enormously from exascale computing.”

Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

This research is part of the DOE-led Exascale Computing Initiative (ECI), a partnership between DOE’s Office of Science and the National Nuclear Security Administration. The Exascale Computing Project (ECP), launched in 2016, brings together research, development, and deployment activities as part of a capable exascale computing ecosystem to ensure an enduring exascale computing capability for the nation.


Source: Lawrence Bernard, ECP

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire