ECP Co-Design Center Achieves Orders of Magnitude Speed-Up in Latest Software Release

October 2, 2017

Oct. 2, 2017 — Just one year after the U.S. Department of Energy (DOE) began funding projects to prepare scientific applications for exascale supercomputers, the Block-Structured Adaptive Mesh Refinement Co-Design Center has released a new version of its software that solves a benchmark problem hundreds of times faster than the original baseline.

The Block-Structured Adaptive Mesh Refinement Co-Design Center is one of five ECP co-design centers, so named because they are structured to create a close interchange of ideas between hardware technologies, software technologies and applications. The goal of the co-design center’s AMReX software framework is to support the development of block-structured adaptive mesh refinement (AMR) algorithms for solving systems of partial differential equations on next-generation architectures.

AMR allows scientists to focus computing power on the most critical parts of the problem in the most computationally efficient way possible. Applications worldwide rely on AMR for a wide variety of applications. Within the ECP specifically, projects in the areas of accelerator modeling, astrophysics, combustion, cosmology and multiphase flows already rely on AMReX to support their algorithms.

Led by John Bell at Lawrence Berkeley National Laboratory, the AMR Co-Design Center builds on previous block-structured AMR work done by Berkeley Lab’s Center for Computational Sciences and Engineering and the lab’s Applied Numerical Algorithms Group. The groups respectively developed BoxLib and Chombo, two of the leading AMR frameworks used by the U.S. research community.

“The goal of the center is to redesign and re-implement our core block-structured AMR methodology to enable codes using AMReX to run efficiently on exascale computers,” said Bell. “Our latest release of AMReX demonstrates that DOE’s investment in the exascale program is already paying scientific dividends. Researchers using AMReX can now run today’s problems more efficiently.”

Members of the BoxLib and Chombo development teams, as well as developers of FLASH, a DOE-supported application code used in astrophysics and high-energy density physics, have come together with researchers from DOE’s National Renewable Energy Laboratory to build the new framework.

The co-design center released its first version of the AMReX framework in June and this latest release adds the capability to represent solid geometries using a technique known as the embedded boundary technique. This approach can be used to calculate flow past an object inside the domain, such as air over an airplane wing, or can represent the boundaries of a domain, such as the walls of a combustion chamber. To measure the effectiveness of ECP’s investment in AMReX, the team used an existing code to define a baseline, then solved the same problem with AMReX.  After a comprehensive re-design of the core data structures and a new implementation of the embedded boundary methodology, AMReX-based solvers reached the solution almost 200 times faster on the same number of processors.

Volume rendering of gas density inside a domain including many of the geometric features used to control and stabilize combustion. The solution is computed using PeleC, one of the ECP application codes built on AMReX that uses the embedded boundary approach to treat geometry. In this calculation, cold fluid enters from the bottom in the center tube while swirling hot fluid enters through the outer annular ring.

In addition, while the baseline code had limited support for running in parallel, the AMReX code uses a hybrid parallel approach, an effective way take full advantage of systems such as Cori with manycore processors.  

Members of the co-design center are also working with other groups developing exascale applications to make sure that researchers will be able to effectively use AMR algorithms on exascale systems when they are deployed.

As one example, AMReX is a cornerstone of the Pele combustion codes being developed by the Transforming Combustion Science and Technology with Exascale Simulations” ECP application project led by Jacqueline Chen of Sandia National Laboratories. This project will enable combustion simulations using direct number simulations (DNS) and hybrid DNS/ arge eddy simulations in realistic geometries. Ultimately, the aim of the project is to contribute to the design of high-efficiency, low-emission combustion engines and gas turbines to reduce emissions and improve fuel efficiency.

“The Pele suite of combustion codes is built on top of the block-structured AMR infrastructure that AMReX is providing,” Chen said. “Notably, AMReX is providing performance portability, embedded boundary methods for complex geometry, and a container for treating particle-based spray, soot and radiation physics modules.”

The importance of AMR to DOE’s research missions was recently recognized as part of the 40th anniversary of the founding of the Department of Energy. To mark the anniversary, DOE’s Office of Science selected 40 of the most significant research milestones. Among them was the 1989 research paper Local adaptive mesh refinement for shock hydrodynamics,” published in the Journal of Computational Physics and written by Marsha J. Berger of New York University and Phillip Colella, who led the development of Chombo.

Over the years AMR has been used to solve increasing complex problems and has been implemented in increasingly sophisticated software frameworks.

“AMR has played an important role in DOE since the ‘90s,” said David Brown, director of Berkeley Lab’s Computational Research Division. “With the development of AMReX, numerous scientific applications will have access to AMR at the exascale, which will have an enormous effect on future scientific productivity.”

The work was funded through the Department of Energy’s Exascale Computing Project through the Office of Advanced Scientific Computing Research in the DOE Office of Science.

About Computing Sciences at Berkeley Lab

The Lawrence Berkeley National Laboratory (Berkeley Lab) Computing Sciences organization provides the computing and networking resources and expertise critical to advancing the Department of Energy’s research missions: developing new energy sources, improving energy efficiency, developing new materials and increasing our understanding of ourselves, our world and our universe.


Source: Lawrence Berkeley National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire