ECP Pagoda Project Rolls Out First Software Libraries

November 2, 2017

Nov. 2 — Just one year after the U.S. Department of Energy’s (DOE) Exascale Computing Program (ECP) began funding projects to prepare scientific applications for exascale supercomputers, the Pagoda Project — a three-year ECP software development program based at Lawrence Berkeley National Laboratory — has successfully reached a major milestone: making its open source software libraries publicly available as of September 30, 2017.

Led by Scott B. Baden, Group Lead of the Computer Languages and Systems Software (CLaSS) Group within Berkeley Lab’s Computational Research Division, the Pagoda Project’s libraries are designed to support lightweight global address space communication for exascale applications. The libraries take advantage of the Partitioned Global Address Space (PGAS) model to emulate large, distributed shared memories. By employing this model, which allows researchers to treat the physically separate memories of each supercomputer node as one address space, the Pagoda libraries will be able to leverage available global address hardware support to significantly reduce the communication costs of moving data — often a performance bottleneck in large-scale scientific applications, Baden explained.

“Our job is to ensure that the exascale applications reach key performance parameters defined by the DOE,” he added.

Thus this first release of the software is as functionally complete as possible, Baden emphasized, covering a good deal of the specification released last June. “We need to quickly determine if our users, in particular our ECP application developer partners, are satisfied,” he said. “If they can give us early feedback, we can avoid surprises later on.”

GASNet-EX and UPC++

The Pagoda software stack comprises a communication substrate layer, GASNet-Ex, and a productivity layer, UPC++. GASNet-Ex is a communication interface that provides language-independent, low-level networking for PGAS languages such as UPC and Coarray Fortran, the UPC++ library and for the Legion Programming Language. UPC++ is a C++ interface for application programmers that creates “friendlier” PGAS abstractions above GASNet-Ex’s communication services.

“GASNet-Ex, which has been around for over 15 years and is being enhanced to make it more versatile and performant in the exascale environment, is a library intended for developers of tools that are in turn used to develop applications,” Baden explained. “It operates at the network hardware level, which is more challenging to program than at the productivity layer.” The GASNet-Ex effort is led by Pagoda co-PI Paul Hargrove and was originally designed by Dan Bonachea, who jointly develops the software. Both are members of CLaSS.

As the productivity layer, UPC++ sits at a slightly higher level over GASNet-Ex, in a form appropriate for applications programmers. The goal of this layer is to impose minimal overheads in exchange for hiding considerable idiosyncratic detail, so users are satisfied with the benefits obtained by increased productivity.

Over the past year, the Pagoda team worked closely with several Berkeley Lab partners to develop applications and application frameworks, including the Adaptive Mesh Refinement Co-Design Center (AMReX), Sparse Solvers (ECP AD project) and ExaBiome (ECP AD Project). They also worked with several industry partners, including IBM, NVIDIA, HPE and Cray, and over the next few months will be meeting with all of the major vendors who are vying to build the first exascale computer or the components that will go into those computers.

“We are part of a large community of ECP developers,” Baden said. “And the ECP wants to deploy a software stack, a full set of tools, as an integrated package that will enable them to ensure that the pieces are compatible, that they will all work together. I am fortunate to be working with such a talented team that is highly motivated to deliver a vital component of the ECP software stack.” This team includes other members of CLaSS—Steve Hofmeyr and Amir Kamil (at the University of Michigan)—as well John Bachan, Brian van Straalen and Mathias Jacquelin. Bryce Lelbach, now with NVIDIA, also made early contributions.

Now that they are publicly available, the Pagoda libraries are expected to be used by other ECP efforts and supercomputer users in general to meet the challenges posed not only by the first-generation exascale computers but by today’s petascale systems as well.

“Much of the ECP software and programming technology can be leveraged across multiple applications, both within ECP and beyond,” said Kathy Yelick, Associate Lab Director for Computing Sciences at Berkeley Lab, in a recent interview with HPCwire. For example, AMReX, which was launched last November and recently announced its own first milestone, released its new framework to support the development of block-structured AMR algorithms, and at least five of the ECP application projects are using AMR to efficiently simulate fine-resolution features, Yelick noted.

For the remaining two years of the Pagoda project, the team will be focused on application integration and performance enhancements that adeptly leverage low-level hardware support, Baden noted.


Source: Berkeley Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire