ECP Project Enabling Highly Accurate Computer Simulations of Complex Materials

July 18, 2019

July 18 — The theory of quantum mechanics underlies explorations of the behavior of matter and energy in the atomic and subatomic realms. Computer simulations based on quantum mechanics are consequently essential in designing, optimizing, and understanding the properties of materials that have, for example, unusual magnetic or electrical properties. Such materials would have potential for use in highly energy-efficient electrical systems and faster, more capable electronic devices that could vastly improve our quality of life.

Quantum mechanics-based simulation methods render robust data by describing materials in a truly first-principles manner. This means they calculate electronic structure in the most basic terms and thus can allow speculative study of systems of materials without reference to experiment, unless researchers choose to add parameters. The quantum Monte Carlo (QMC) family of these approaches is capable of delivering the most highly accurate calculations of complex materials without biasing the results of a property of interest.

An effort within the US Department of Energy’s Exascale Computing Project (ECP) is developing a QMC methods software named QMCPACK to find, predict, and control materials and properties at the quantum level. The ultimate aim is to achieve an unprecedented and systematically improvable accuracy by leveraging the memory and power capabilities of the forthcoming exascale computing systems.

Greater Accuracy, Versatility, and Performance

One of the primary objectives of the QMCPACK project is to reduce errors in calculations so that predictions concerning complex materials can be made with greater assurance.

“We would like to be able to tell our colleagues in experimentation that we have confidence that a certain short list of materials is going to have all the properties that we think they will,” said Paul Kent of Oak Ridge National Laboratory and principal investigator of QMCPACK. “Many ways of cross-checking calculations with experimental data exist today, but we’d like to go further and make predictions where there aren’t experiments yet, such as a new material or where taking a measurement is difficult—for example, in conditions of high pressure or under an intense magnetic field.”

The methods the QMCPACK team is developing are fully atomistic and material specific. This refers to having the capability to address all of the atoms in the material—whether it be silver, carbon, cerium, or oxygen, for example—compared with more simplified lattice model calculations where the full details of the atoms are not included.

The team’s current activities are restricted to simpler, bulk-like materials; but exascale computing is expected to greatly widen the range of possibilities. “At exascale not only the increase in compute power but also important changes in the memory on the machines will enable us to explore material defects and interfaces, more-complex materials, and many different elements,” Kent said.

With the software engineering, design, and computational aspects of delivering the science as the main focus, the project plans to improve QMCPACK’s performance by at least 50x. Based on experimentation using a mini-app version of the software, and incorporating new algorithms, the team achieved a 37x improvement on the pre-exascale Summit supercomputer versus the Titan system.

One Robust Code

“We’re taking the lessons we’ve learned from developing the mini app and this proof of concept, the 37x, to update the design of the main application to support this high efficiency, high performance for a range of problem sizes,” Kent said. “What’s crucial for us is that we can move to a single version of the code with no internal forks, to have one source supporting all architectures. We will use all the lessons we’ve learned with experimentation to create one version where everything will work everywhere—then it’s just a matter of how fast. Moreover, in the future we will be able to optimize. But at least we won’t have a gap in the feature matrix, and the student who is running QMCPACK will always have all features work.”

As an open-source and openly developed product, QMCPACK is improving via the help of many contributors. The QMCPACK team recently published the master citation paper for the software’s code; the publication has 48 authors with a variety of affiliations.

“Developing these large science codes is an enormous effort,” Kent said. “QMCPACK has contributors from ECP researchers, but it also has many past developers. For example, a great deal of development was done for the Knights Landing processor on the Theta supercomputer with Intel. This doubled the performance on all CPU-like architectures.”

A Synergistic Team

The QMCPACK project’s collaborative team draws talent from Argonne, Lawrence Livermore, Oak Ridge, and Sandia National Laboratories. It also benefits from collaborations with Intel and NVIDIA. The composition of the staff is nearly equally divided between scientific domain specialists and people centered on the software engineering and computer science aspects.

“Bringing all of this expertise together through ECP is what has allowed us to perform the design study, reach the 37x, and improve the architecture,” Kent said. “All the materials we work with have to be doped, which means incorporating additional elements in them. We can’t run those simulations on Titan but are beginning to do so on Summit with improvements we have made as part of our ECP project. We are really looking forward to the opportunities that will open up when the exascale systems are available.”

For information on the researchers, visit https://www.exascaleproject.org/robustly-delivering-highly-accurate-computer-simulations-of-complex-materials/.


Source: ECP (written by Scott Gibson)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Simulating Car Crashes with Supercomputers – and Lego

October 18, 2019

It’s an experiment many of us have carried out at home: crashing two Lego creations into each other, bricks flying everywhere. But for the researchers at the General German Automobile Club (ADAC) – which is comparabl Read more…

By Oliver Peckham

NASA Uses Deep Learning to Monitor Solar Weather

October 17, 2019

Solar flares may be best-known as sci-fi MacGuffins, but those flares – and other space weather – can have serious impacts on not only spacecraft and satellites, but also on Earth-based systems such as radio communic Read more…

By Oliver Peckham

Federated Learning Applied to Cancer Research

October 17, 2019

The ability to share and analyze data while protecting patient privacy is giving medical researchers a new tool in their efforts to use what one vendor calls “federated learning” to train models based on diverse data Read more…

By George Leopold

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departure from past practice, the NSB has divided the 2020 S&E Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

How Do We Power the New Industrial Revolution?

[Attend the IBM LSF, HPC & AI User Group Meeting at SC19 in Denver on November 19!]

Almost everyone is talking about artificial intelligence (AI). Read more…

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departu Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This