ECP Project Enabling Highly Accurate Computer Simulations of Complex Materials

July 18, 2019

July 18 — The theory of quantum mechanics underlies explorations of the behavior of matter and energy in the atomic and subatomic realms. Computer simulations based on quantum mechanics are consequently essential in designing, optimizing, and understanding the properties of materials that have, for example, unusual magnetic or electrical properties. Such materials would have potential for use in highly energy-efficient electrical systems and faster, more capable electronic devices that could vastly improve our quality of life.

Quantum mechanics-based simulation methods render robust data by describing materials in a truly first-principles manner. This means they calculate electronic structure in the most basic terms and thus can allow speculative study of systems of materials without reference to experiment, unless researchers choose to add parameters. The quantum Monte Carlo (QMC) family of these approaches is capable of delivering the most highly accurate calculations of complex materials without biasing the results of a property of interest.

An effort within the US Department of Energy’s Exascale Computing Project (ECP) is developing a QMC methods software named QMCPACK to find, predict, and control materials and properties at the quantum level. The ultimate aim is to achieve an unprecedented and systematically improvable accuracy by leveraging the memory and power capabilities of the forthcoming exascale computing systems.

Greater Accuracy, Versatility, and Performance

One of the primary objectives of the QMCPACK project is to reduce errors in calculations so that predictions concerning complex materials can be made with greater assurance.

“We would like to be able to tell our colleagues in experimentation that we have confidence that a certain short list of materials is going to have all the properties that we think they will,” said Paul Kent of Oak Ridge National Laboratory and principal investigator of QMCPACK. “Many ways of cross-checking calculations with experimental data exist today, but we’d like to go further and make predictions where there aren’t experiments yet, such as a new material or where taking a measurement is difficult—for example, in conditions of high pressure or under an intense magnetic field.”

The methods the QMCPACK team is developing are fully atomistic and material specific. This refers to having the capability to address all of the atoms in the material—whether it be silver, carbon, cerium, or oxygen, for example—compared with more simplified lattice model calculations where the full details of the atoms are not included.

The team’s current activities are restricted to simpler, bulk-like materials; but exascale computing is expected to greatly widen the range of possibilities. “At exascale not only the increase in compute power but also important changes in the memory on the machines will enable us to explore material defects and interfaces, more-complex materials, and many different elements,” Kent said.

With the software engineering, design, and computational aspects of delivering the science as the main focus, the project plans to improve QMCPACK’s performance by at least 50x. Based on experimentation using a mini-app version of the software, and incorporating new algorithms, the team achieved a 37x improvement on the pre-exascale Summit supercomputer versus the Titan system.

One Robust Code

“We’re taking the lessons we’ve learned from developing the mini app and this proof of concept, the 37x, to update the design of the main application to support this high efficiency, high performance for a range of problem sizes,” Kent said. “What’s crucial for us is that we can move to a single version of the code with no internal forks, to have one source supporting all architectures. We will use all the lessons we’ve learned with experimentation to create one version where everything will work everywhere—then it’s just a matter of how fast. Moreover, in the future we will be able to optimize. But at least we won’t have a gap in the feature matrix, and the student who is running QMCPACK will always have all features work.”

As an open-source and openly developed product, QMCPACK is improving via the help of many contributors. The QMCPACK team recently published the master citation paper for the software’s code; the publication has 48 authors with a variety of affiliations.

“Developing these large science codes is an enormous effort,” Kent said. “QMCPACK has contributors from ECP researchers, but it also has many past developers. For example, a great deal of development was done for the Knights Landing processor on the Theta supercomputer with Intel. This doubled the performance on all CPU-like architectures.”

A Synergistic Team

The QMCPACK project’s collaborative team draws talent from Argonne, Lawrence Livermore, Oak Ridge, and Sandia National Laboratories. It also benefits from collaborations with Intel and NVIDIA. The composition of the staff is nearly equally divided between scientific domain specialists and people centered on the software engineering and computer science aspects.

“Bringing all of this expertise together through ECP is what has allowed us to perform the design study, reach the 37x, and improve the architecture,” Kent said. “All the materials we work with have to be doped, which means incorporating additional elements in them. We can’t run those simulations on Titan but are beginning to do so on Summit with improvements we have made as part of our ECP project. We are really looking forward to the opportunities that will open up when the exascale systems are available.”

For information on the researchers, visit https://www.exascaleproject.org/robustly-delivering-highly-accurate-computer-simulations-of-complex-materials/.


Source: ECP (written by Scott Gibson)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire