Eight Georgia Tech Schools Partner for Advanced Degree in Machine Learning

June 19, 2017

ATLANTA, June 19, 2017 — The Georgia Institute of Technology has been approved to offer a new advanced degree program for the emerging field of machine learning.

In a unanimous vote, the Board of Regents of the University System of Georgia approved Georgia Tech’s request to establish a Doctor of Philosophy in Machine Learning.

“The field of machine learning is now ubiquitous in everything we do. It impacts everything from robotics and cybersecurity to data analytics – all topics of extraordinary interest to Georgia Tech,” said Rafael L. Bras, Georgia Tech provost and executive vice president for Academic Affairs and the K. Harrison Brown Family Chair.

“This new Ph.D. program embraces the interdisciplinary impact and nature of machine learning and serves to strengthen Georgia Tech’s strong position as a leading center of knowledge and expertise in this increasingly important field of study.”

A collaborative approach

The machine learning (ML) Ph.D. program is a collaborative venture between the colleges of Computing, Engineering, and Sciences. An inaugural class of approximately 15 students is scheduled to convene for the Fall 2017 semester. The class is expected to comprise incoming Ph.D. students and some who may have recently begun other programs at Georgia Tech.

Qualified students can apply to the program through one of eight participating schools at Georgia Tech. These include the schools of Computational Science and Engineering, Computer Science, and Interactive Computing in the College of Computing.

Participating schools in the College of Engineering include the School of Electrical and Computer Engineering, the Stewart School of Industrial and Systems Engineering, the Coulter Department of Biomedical Engineering, and the Guggenheim School of Aerospace Engineering.

Students can also apply for the ML Ph.D. program through the School of Mathematics in the College of Sciences.

“The ML Ph.D. degree program is ideal for students from a variety of academic backgrounds interested in multidisciplinary collaboration,” said Justin Romberg, the Schlumberger Professor in the School of Electrical and Computer Engineering and program curriculum coordinator for the ML Ph.D. program.

“Students will learn to integrate and apply principles from computing, statistics, optimization, engineering, mathematics, and science to innovate and create machine learning models and then apply them to answer important, real-world, data-intensive questions.”

ML@GT

Although students apply to the program through one of eight schools, the hub for the new ML Ph.D. degree is the Center for Machine Learning at Georgia Tech (ML@GT).

Opened in July 2016 as the home for machine learning at Georgia Tech, ML@GT has more than 100 affiliated faculty members from five Georgia Tech colleges and the Georgia Tech Research Institute, as well as some jointly affiliated with Emory University.

“While there are many faculty members doing machine learning research at Georgia Tech, until now there has been a lack of a structured and systematic interdisciplinary ML training program for students,” said College of Computing Professor and ML@GT Director Irfan Essa.

“Once accepted to the program, students become members of the ML@GT community, where they will be able to develop a solid understanding of fundamental principles across a range of core areas in the machine learning discipline.”

The operations and curricular requirements for the new Ph.D. program – which include five core and five elective courses, a qualifying exam, and a doctoral dissertation defense – will be managed by ML@GT.

The five core courses in the ML Ph.D. degree program are:

  • Mathematical Foundations of Machine Learning
  • Intermediate Statistics
  • Machine Learning: Theory and Methods
  • Probabilistic Graphical Models and Machine Learning in High Dimensions
  • Optimization

“Our goal is to have students develop a deep understanding and expertise in a specific theoretical aspect or application area of the machine learning discipline,” said Romberg.

“The students will be able to apply and integrate the knowledge and skills they have developed and demonstrate their expertise and proficiency in an application area of practical importance.”

After successfully completing all of the curricular requirements, students will have the computational skills and mathematical modeling skills needed for careers in industry, government, or academia.

“Machine learning is helping industries – from aerospace and biomedicine to cybersecurity and financial services – make sense of data to improve business processes and identify previously hidden connections that benefit their businesses and their customers,” said Essa.

“Beyond this, machine learning is fueling a rapid development of stronger, more robust artificial intelligence applications, like natural language processing, that may help to solve many of the world’s more complex and longstanding problems.”


Source: Georgia Tech

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series and timeliness in general, according to Paul Morin, directo Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic markets. Skylake will carry Intel's flag in the fight for le Read more…

By Doug Black

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Perverse Incentives? How Economics (Mis-)shaped Academic Science

July 12, 2017

The unintended consequences of how we fund academic research—in the U.S. and elsewhere—are strangling innovation, putting universities into debt and creatin Read more…

By Ken Chiacchia, Senior Science Writer, Pittsburgh Supercomputing Center

Why Tech is Failing at Diversity and How It Can Succeed

July 11, 2017

The sectors that are supposed to be all about innovation and the future continue to fail spectacularly at gender equity and diversity. UK, US and Canada still haven’t managed to break the average 20 percent threshold for gender equity across STEM academic disciplines. Read more…

By Kelly Nolan

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This