Eight Georgia Tech Schools Partner for Advanced Degree in Machine Learning

June 19, 2017

ATLANTA, June 19, 2017 — The Georgia Institute of Technology has been approved to offer a new advanced degree program for the emerging field of machine learning.

In a unanimous vote, the Board of Regents of the University System of Georgia approved Georgia Tech’s request to establish a Doctor of Philosophy in Machine Learning.

“The field of machine learning is now ubiquitous in everything we do. It impacts everything from robotics and cybersecurity to data analytics – all topics of extraordinary interest to Georgia Tech,” said Rafael L. Bras, Georgia Tech provost and executive vice president for Academic Affairs and the K. Harrison Brown Family Chair.

“This new Ph.D. program embraces the interdisciplinary impact and nature of machine learning and serves to strengthen Georgia Tech’s strong position as a leading center of knowledge and expertise in this increasingly important field of study.”

A collaborative approach

The machine learning (ML) Ph.D. program is a collaborative venture between the colleges of Computing, Engineering, and Sciences. An inaugural class of approximately 15 students is scheduled to convene for the Fall 2017 semester. The class is expected to comprise incoming Ph.D. students and some who may have recently begun other programs at Georgia Tech.

Qualified students can apply to the program through one of eight participating schools at Georgia Tech. These include the schools of Computational Science and Engineering, Computer Science, and Interactive Computing in the College of Computing.

Participating schools in the College of Engineering include the School of Electrical and Computer Engineering, the Stewart School of Industrial and Systems Engineering, the Coulter Department of Biomedical Engineering, and the Guggenheim School of Aerospace Engineering.

Students can also apply for the ML Ph.D. program through the School of Mathematics in the College of Sciences.

“The ML Ph.D. degree program is ideal for students from a variety of academic backgrounds interested in multidisciplinary collaboration,” said Justin Romberg, the Schlumberger Professor in the School of Electrical and Computer Engineering and program curriculum coordinator for the ML Ph.D. program.

“Students will learn to integrate and apply principles from computing, statistics, optimization, engineering, mathematics, and science to innovate and create machine learning models and then apply them to answer important, real-world, data-intensive questions.”

ML@GT

Although students apply to the program through one of eight schools, the hub for the new ML Ph.D. degree is the Center for Machine Learning at Georgia Tech (ML@GT).

Opened in July 2016 as the home for machine learning at Georgia Tech, ML@GT has more than 100 affiliated faculty members from five Georgia Tech colleges and the Georgia Tech Research Institute, as well as some jointly affiliated with Emory University.

“While there are many faculty members doing machine learning research at Georgia Tech, until now there has been a lack of a structured and systematic interdisciplinary ML training program for students,” said College of Computing Professor and ML@GT Director Irfan Essa.

“Once accepted to the program, students become members of the ML@GT community, where they will be able to develop a solid understanding of fundamental principles across a range of core areas in the machine learning discipline.”

The operations and curricular requirements for the new Ph.D. program – which include five core and five elective courses, a qualifying exam, and a doctoral dissertation defense – will be managed by ML@GT.

The five core courses in the ML Ph.D. degree program are:

  • Mathematical Foundations of Machine Learning
  • Intermediate Statistics
  • Machine Learning: Theory and Methods
  • Probabilistic Graphical Models and Machine Learning in High Dimensions
  • Optimization

“Our goal is to have students develop a deep understanding and expertise in a specific theoretical aspect or application area of the machine learning discipline,” said Romberg.

“The students will be able to apply and integrate the knowledge and skills they have developed and demonstrate their expertise and proficiency in an application area of practical importance.”

After successfully completing all of the curricular requirements, students will have the computational skills and mathematical modeling skills needed for careers in industry, government, or academia.

“Machine learning is helping industries – from aerospace and biomedicine to cybersecurity and financial services – make sense of data to improve business processes and identify previously hidden connections that benefit their businesses and their customers,” said Essa.

“Beyond this, machine learning is fueling a rapid development of stronger, more robust artificial intelligence applications, like natural language processing, that may help to solve many of the world’s more complex and longstanding problems.”


Source: Georgia Tech

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Installation of Sierra Supercomputer Steams Along at LLNL

November 20, 2017

Sierra, the 125 petaflops machine based on IBM’s Power9 chip and being built at Lawrence Livermore National Laboratory, sometimes takes a back seat to Summit, the 180 petaflops system being built at Oak Ridge National Read more…

By John Russell

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This