Electrons That Flow Like Liquids Pave the Way for Robust Quantum Computers

October 26, 2022

Oct. 26, 2022 — Quantum computers, which can perform calculations much faster than traditional computers, have a big problem: They are prone to data storage and processing errors caused by disturbances from the environment like vibrations and radiation from warm objects.

(L-R) Dr. Que Yande, a senior research fellow from Nanyang Technological Universit; Asst. Prof. Bent Weber who led the research; and PhD student Jia Junxiang, the first author of the study, with a scanning tunnelling microscope at the university. Credit: SPMS/NTU Singapore.

But a discovery by scientists led by Nanyang Technological University, Singapore (NTU Singapore), on how electrons can be controlled at very low temperatures, suggests a way for addressing this problem and developing more robust and accurate quantum computers.

The team’s findings which were published online in the Nature Communications journal in October 2022, showed, for the first time, that electrons can have strong interactions between them under certain conditions.

These interactions, previously only predicted in theoretical models, were observed on the edges of a type of atomically thin and electrically insulating material at ultra-low temperatures close to the coldness of outer space.

Headed by Asst Prof Bent Weber from NTU Singapore’s School of Physical and Mathematical Sciences (SPMS), the research team confirmed that interactions at these low temperatures cause the electrons to flow like a liquid. This means that the electrons tend to move collectively along a line instead of moving individually or haphazardly in different directions.

Getting the electrons “in line” for this special state of matter, dubbed a “helical Tomonaga-Luttinger liquid”, is one of the key factors that physicists believe is critical to allowing electrons to group together to form a particle called a parafermion. Besides this special state of matter, another key factor for parafermions to form is needed, which comes into play at even lower temperatures: superconductivity. This property, which refers to the ability to conduct electricity without losing energy, can be found in certain materials.

Creating parafermions is a highly sought-after goal of scientists as these particles are predicted to help quantum computers store information in a more robust way than is possible today.

Quantum computers, which can solve a complex mathematical problem in minutes compared with thousands of years for supercomputers, currently store information by manipulating electrons or light at ultra-low temperatures close to absolute zero or about -273 degrees Celsius.

But the stored data in a quantum computer can be very easily corrupted by disturbances from the environment, including vibrations, radiation from warm objects or changes in electric fields.

Parafermions, however, are believed to be much more resistant to such disturbances because the interactions between the electrons that form a parafermion and the way they move in a material make them more stable. If parafermions were used to store information in quantum computers, the machines should be less prone to errors.

Scanning Electrons

Ripples in an “electronic liquid” that were probed by the atomically sharp tip of a scanning tunnelling microscope in the researchers’ experiments. Credit: SPMS/NTU Singapore.

In this latest research, the scientists observed how electrons behaved under a scanning tunnelling microscope. This was done by bringing the edge of a special class of very thin electrically insulating material incredibly close to the extremely sharp metal tip of the microscope. The distance between the two was just one nanometre or less, even smaller than a strand of DNA.

The insulating material the researchers used comprised microscopic, one atom thick crystals of the compound tungsten ditelluride grown on a graphite or graphene substrate. Such materials, which appear almost two dimensional, are classified as “quantum spin Hall insulators”, which are electrically insulating on the inside but have electrons present along the materials’ edges.

The scientists then applied an electric current from the microscope and observed the electrons, while keeping the temperature of the experiment as low as 4.5 Kelvin or about -269 degrees Celsius. This is close to absolute zero, the temperature at which particles slow down so much that they stop moving almost completely.

Usually, electrons repel one another as they are all negatively charged, and tend to behave in a gas-like way, not typically grouping together. But as temperature falls, the electrons’ movements slow down.

At low enough temperatures, strong repulsion between the electrons causes the particles to behave like a liquid.
A measure for the strength of the interactions is a value called the Luttinger parameter. When this parameter is 1, the interactions between the electrons are at their weakest.

“When the Luttinger parameter is less than 0.5, the interactions are strong and the electrons are forced into collective motion. This is the realm where parafermions are predicted to exist,” Asst Prof Weber said.

Using different substrates such as graphene or graphite, and checking different edges of the materials, the researchers were able to determine very low Luttinger parameters which could be controlled within a range of 0.21 to 0.33.

“This is a truly remarkable range of variation, since the Luttinger parameter can only range between 0 and 1,” said Asst Prof Weber. “Control of the Luttinger parameter at such low values has never been observed before in any helical Tomonaga-Luttinger liquid.”

(L-R) Dr Que Yande, a senior research fellow from NTU Singapore’s SPMS; PhD student Jia Junxiang, the first author of the study; and Asst Prof Bent Weber from the school who led the research, with a scanning tunnelling microscope at the university. Credit: SPMS/NTU Singapore.

 

Mr Jia Junxiang, a PhD student from Asst Prof Weber’s research group and the first author of the study, said that the experiments were difficult to conduct.

“The scanning tunnelling spectroscopy was performed at temperatures of 4.5 Kelvin, and we needed to locate features within less than 30 nanometres (nm),” he said. “The edge of the quantum spin Hall insulator tested was only 2nm thick.”
Probing the surface of materials with the microscope at such distances without losing track of the spot being observed amid changing temperatures is very challenging.

“In the future, one of our biggest challenges will be to move to even lower temperatures, which are needed to observe parafermions. For that, we require much more advanced laboratories and equipment,” said Mr Jia.

Going forward, Asst Prof Weber plans to conduct experiments using such advanced equipment in a new Ultra-Low Vibration Laboratory that was built at NTU Singapore this year. The laboratory will allow experiments to be done at even lower temperatures of 150 millikelvins (mK), which is close to -273 degrees Celsius, where certain materials can become superconducting.

Experimenting on superconducting quantum spin Hall insulators will be the next phase of research his team will embark on in the search for parafermions.

Details of the study can be found in “Tuning the many-body interactions in a helical Luttinger liquid” in Nature Communications (2022).

A close-up view of the tip of a scanning tunnelling microscope at NTU Singapore and a test sample inside the microscope’s ultra-high vacuum chamber. The chamber is needed to reach the ultra-low temperatures for the experiments and to protect the quantum spin Hall insulators tested. Credit: SPMS/NTU Singapore.

Source: Nanyang Technological University, Singapore

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

AWS Solution Channel

Shutterstock 1648511269

Avoid overspending with AWS Batch using a serverless cost guardian monitoring architecture

Pay-as-you-go resources are a compelling but daunting concept for budget conscious research customers. Uncertainty of cloud costs is a barrier-to-entry for most, and having near real-time cost visibility is critical. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected “how supercomputing is continuously changing the world by Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Gordon Bell Nominee Used LLMs, HPC, Cerebras CS-2 to Predict Covid Variants

November 17, 2022

Large language models (LLMs) have taken the tech world by storm over the past couple of years, dominating headlines with their ability to generate convincing hu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Leading Solution Providers

Contributors

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire