Engineering of Swedish Quantum Computer Set to Start

November 15, 2017

Nov. 15, 2017 — A SEK 1 billion research initiative is setting Sweden on course to a global top position in quantum technology. The focus is on developing a quantum computer with much greater computing power than the best supercomputers of today. The initiative, which is headed up by Professor Per Delsing at Chalmers University of Technology, has been made possible by an anniversary donation of SEK 600 million from the Knut and Alice Wallenberg Foundation.

The progress of research in quantum technology in recent years has brought the world to the brink of a new technology revolution – the second quantum revolution. Researchers have learnt to control individual quantum systems such as individual atoms, electrons and particles of light, which is opening the door to completely new possibilities. Extremely rapid computers, intercept-proof communications and hyper-sensitive measurement methods are in sight.

A major Swedish initiative – the Wallenberg Centre for Quantum Technology – is now being launched under the leadership of Chalmers University of Technology to contribute to, and implement the second quantum revolution. Some 50 researchers are to be recruited under the decade-long research programme which begins in January 2018. In addition to the donation from the Knut and Alice Wallenberg Foundation further funds are coming from industry, Chalmers University of Technology and other universities, resulting in a total budget of close to SEK 1 billion.

The programme’s focus project centres on the engineering of a quantum computer based on superconducting circuits. The smallest building block of the quantum computer – the qubit – is based on principles which are entirely different from those of today’s computers, thus enabling the quantum computer to process vast quantities of data using relatively few qubits.

“Our goal is to have a functioning quantum computer with at least a hundred qubits. Such a computer has far greater computing power than the best supercomputers of today and can be used, for example, to solve optimisation problems, advanced machine learning, and heavy calculations of the properties of molecules,” says Per Delsing, Professor of Quantum Device Physics at Chalmers University of Technology and the initiative’s programme director.

See and hear the researchers tell their story in a video on Youtube: The Quantum Revolution

There is a great deal of interest in quantum technology throughout the world. Major investments are being made in the USA, Canada, Japan and China and the EU is launching a Quantum Technology Flagship in 2019. Companies such as Google and IBM are also investing in quantum computers and, like Chalmers, have chosen to base them on superconducting circuits. Policy-makers and business managers are starting to realise that quantum technology has the potential to change our society significantly, through improved artificial intelligence, secure encryption and more efficient design of medicines and materials.

“If Sweden is to continue to be a leading nation we need to be at the forefront in these fields. By focusing on the long-term expansion of expertise and by attracting the best young researchers we can put Sweden on the quantum technology map in the long term. There are no shortcuts. By investing in basic research we can ensure that the necessary infrastructure is in place so that over time other players and companies can take over and develop applications and new technologies,” says Peter Wallenberg Jr, chairman of the Knut and Alice Wallenberg Foundation.

In addition to the focus project the research programme includes a national excellence initiative with the aim of carrying out research and building up expertise in the four sub-areas of quantum technology: quantum computers, quantum simulators, quantum communication and quantum sensors. Chalmers University of Technology is coordinating the first two sub-areas. The expansion of expertise in quantum communication is headed up by Professor Gunnar Björk at KTH Royal Institute of Technology, and Professor Stefan Kröll at Lund University is coordinating the quantum sensor field.

Chalmers researchers have been working on superconducting qubits for almost 20 years and have made many contributions to enhance knowledge in the field, including publications in Nature and Science. They were among the first in the world to create a superconducting qubit, and have explored a completely new area of physics through wide-ranging experiments on individual qubits.

“I am pleased that our quantum physics researchers, along with colleagues in the rest of Sweden, will have this opportunity to focus on a specific and important goal in a way that all of Sweden can benefit from the knowledge acquired. I would also like to extend my warmest thanks to the Wallenberg Foundation for its deep commitment and long-term support,” says Stefan Bengtsson, President and CEO of Chalmers.

In parallel with this, the Knut and Alice Wallenberg Foundation is investing SEK 1 billion in artificial intelligence, channelled through the Wallenberg Autonomous Systems and Software Program (WASP), which was launched in 2015. Details of the investment can be found in a press release from Linköping University: Billion-investment in Swedish AI research

Read more about the link between the two anniversary donations in a press release from the Knut and Alice Wallenberg Foundation: SEK 1.6 billion for artificial intelligence and quantum technology

Wallenberg Centre for Quantum Technology

  • Wallenberg Centre for Quantum Technology is a ten-year SEK 1 billion initiative aimed at bringing Swedish research and industry to the front of the second quantum revolution.
  • The research programme aims to develop and secure Swedish competence in all areas of quantum technology: quantum computing, quantum simulation, quantum communications and quantum sensing.
  • The research programme includes a focus project aimed at developing a quantum computer and an excellence programme covering the four areas of quantum technology.
  • Wallenberg Centre for Quantum Technology is led by, and is largely located at Chalmers University of Technology. The areas of quantum communication and quantum sensors are coordinated by KTH Royal Institute of Technology and Lund University.
  • The initiative includes a graduate research school, a postdoctoral program, a guest researcher programme and funds for recruiting young researchers. It will ensure Swedish long-term expertise in quantum technology, even after the end of the programme.
  • Collaboration with several industry partners ensures that the areas of application become relevant to Swedish industry.

Read more in the programme fact sheet: Wallenberg Centre for Quantum Technology

The second quantum revolution

In the 20th century, the first quantum revolution took place. It gave us inventions like the laser and transistor – inventions that underlie the entire information technology that forms today’s society.

After many years of basic research on strange quantum phenomena such as superposition, entanglement and squeezed states, scientists have learned to control individual quantum systems as individual atoms, electrons and photons. The world record currently stands at 20 qubits, but rapid progress is being made each month. Applications such as extremely fast quantum devices, intercept-proof communications and hyper-sensitive measuring methods are in sight.

Therefore, heavy investments in quantum technology are being made throughout the world. The EU launches a ten-year venture of one billion euros in 2019. Even larger programmes exist in North America, Asia and Australia. IT companies like Google, IBM, Intel and Microsoft are also making significant investments. Safe and fast communication is a strong driving force for quantum technology. Already today there are commercial systems that can transmit quantum encryption keys through an unbroken optical fibre over 100 kilometres, although at a relatively low speed.

An imminent milestone that scientists are struggling to achieve is to demonstrate quantum supremacy, which means solving a problem beyond reach even for the most powerful future classic computer. This requires at least 50 qubits. This will be done by means of a quantum simulator, a simpler form of quantum computer. Useful applications of quantum simulation are expected within five years. Realizing a functioning programmable quantum computer will take significantly longer.

Mankind’s knowledge about the world and our technical advances are limited by what we can measure, and how accurately. Researchers are also learning to use individual particles, such as photons and electrons, as sensors in measurements of force, gravity, electrical fields, etc. With quantum technology, the measuring power is pushed far beyond what was previously possible.

Read more about central quantum phenomena in the fact sheet: Quantum technology


Source: Chalmers University of Technology

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire