Engineers Work on New Material for Computer Chips

October 12, 2022

Oct. 12, 2022 — The amount of energy used for computing is climbing at an exponential rate. Business intelligence and consulting firm Enerdata reports that information, communication and technology accounts for 5% to 9% of total electricity consumption worldwide.

Credit: Acta Materialia.

If growth continues unabated, computing could demand up to 20% of the world’s power generation by 2030. With power grids already under strain from weather-related events and the economy transitioning from fossil fuel to renewables, engineers desperately need to flatten computing’s energy demand curve.

Members of Jon Ihlefeld‘s multifunctional thin film group are doing their part. They are investigating a material system that will allow the semiconductor industry to co-locate computation and memory on a single chip.

“Right now we have a computer chip that does its computing activities with a little bit of memory on it,” said Ihlefeld, associate professor of materials science and engineering and electrical and computer engineering at the University of Virginia School of Engineering and Applied Science.

Every time the computer chip wants to talk to memory the larger memory bank, it sends a signal down the line, and that requires energy. The longer the distance, the more energy it takes. Today the distance can be quite far—up to several centimeters.

“In a perfect world, we would get them in direct contact with each other,” Ihlefeld said.

That requires memory materials that are compatible with the rest of the integrated circuit. One class of materials suitable for memory devices are ferroelectrics, meaning they can hold and release a charge on demand. However, most ferroelectrics are incompatible with silicon and do not perform well when made very small, a necessity for modern-day and future miniaturized devices.

Researchers in Ihlefeld’s lab are playing matchmaker. Their research advances materials with electrical and optical properties that make modern computation and communication possible, a research strength of the Department of Materials Science and Engineering. They also specialize in fabrication and characterization of a range of materials, a research strength of the Charles L. Brown Department of Electrical and Computer Engineering.

Their material of interest is hafnium oxide, which is used in the manufacture of cell phones and computers today. The downside is that in its natural state, hafnium oxide is not ferroelectric.

A Tip of the Cap to Shelby Fields

Over the last 11 years, it has become known that hafnium oxide’s atoms can be manipulated to produce and hold a ferroelectric phase, or structure. When a hafnium oxide thin film is heated, a process called annealing, its atoms can move into the crystallographic pattern of a ferroelectric material; when the thin film is cooled, its crystalline structure sets in place.

Why formation of the ferroelectric phase happens has been the subject of much speculation. Shelby Fields, who earned a Ph.D. in materials science engineering from UVA this year, published a landmark study to explain how and why hafnium oxide forms into its useful, ferroelectric phase.

Fields’ paper, Origin of Ferroelectric Phase Stabilization via the Clamping Effect in Ferroelectric Hafnium Zirconium Oxide Thin Films, published in August in Advanced Electronic Materials, illustrates how to stabilize a hafnium oxide-based thin film when it is sandwiched between a metal substrate and an electrode. Previous research found that more of the film stabilizes in the ferroelectric crystalline phase when the top electrode is in place for thermal annealing and cooling.

“The community had all sorts of explanations for why this is, and it turns out we were wrong,” Fields said. “We thought the top electrode exerted some kind of mechanical stress, radiating laterally across the plane of the electrode, that prevented the hafnium oxide from stretching out and returning to its natural, non-ferroelectric state. My research shows that the mechanical stress moves out of plane; the electrode has a clamping effect.”

The whole sandwich—the substrate, thin film and electrode—is a capacitor, and this finding could very well alter the materials that semiconductor manufacturers select as electrodes.

“Now we understand why the top layer is such an important consideration. Down the line, people who want to integrate computing and memory on a single chip will have to think about all the processing steps more carefully,” Fields said.

Fields’ paper summarizes the concluding chapter of his dissertation research. In prior published research, Fields demonstrated techniques to measure very thin films and mechanical stresses; the miniscule materials made stress measurements experimentally difficult.

Contributors in this collaborative research include group members Samantha Jaszewski, Ale Salanova and Takanori Mimura as well as Wesley Cai and Brian Sheldon from Brown University, David Henry from Sandia National Labs, Kyle Kelley from Oak Ridge National Lab, and Helge Heinrich from UVA’s Nanoscale Materials Characterization Facility.

“We wanted to go beyond anecdotal descriptions and provide data to back up our characterization of the material’s behavior,” Fields said. “I am glad we could provide the community with greater clarity regarding this clamping effect. We know the top layer matters a lot and we can engineer that top layer to improve the clamping effect, and perhaps engineer the bottom layer to help with this effect, too. The ability to leverage a single experimental variable to control the crystalline phase would be a huge advantage for the semiconductor field. I would love for someone to ask and answer that question.”

O Marks the Spot

That someone could be Samantha Jaszewski, a Ph.D. student of materials science and engineering and a member of Ihlefeld’s Multifunctional Thin Film research group. Jaszewski also wants to understand what contributes to the stability of hafnium oxide’s ferroelectric phase and how chip designers can control the material’s behavior.

Jaszewski’s research focuses on the atomic make-up of hafnium oxide in its natural and ferroelectric phase, with specific attention on the role of oxygen atoms. Her study, Impact of Oxygen Content on Phase Constitution and Ferroelectric Behavior of Hafnium Oxide Thin Films Deposited by Reactive High-Power Impulse Magnetron Sputtering, is published in the October 2022 issue of Acta Materialia.

Hafnium oxide, as the name suggests, is composed of hafnium and oxygen atoms. “Sometimes we are missing those oxygen atoms in certain places, and that helps stabilize the ferroelectric phase,” Jaszewski said.

The natural, non-ferroelectric state can tolerate a number of these oxygen vacancies, but not as many as needed to stabilize the ferroelectric phase. The precise concentration and location of oxygen vacancies that makes hafnium oxide ferroelectric has proven elusive because there aren’t many tools available to make a definitive measurement.

Jaszewski worked around that problem by using several different techniques to measure oxygen vacancies in the team’s thin films and correlated that with ferroelectric properties. She discovered that the ferroelectric phase requires a much higher number of oxygen vacancies than previously thought.

X-ray photoelectron spectroscopy was the go-to tool to calculate oxygen vacancy concentrations. Jaszewski discovered that there are contributing factors beyond what users of this spectroscopy technique typically measure, leading to a vast undercount of the oxygen vacancies.

Jaszewski’s experiments also reveal that oxygen vacancies may be one of, if not the, most important parameters to stabilize the ferroelectric phase of the material. More research needs to be done to understand how the vacancies exist. She would also like to have other research teams measure the oxygen vacancies using her method to validate her findings.

Jaszewski’s research overturns conventional wisdom, which suggested that the size of the crystal—called a grain—is what stabilizes the hafnium oxide. Jaszewski made three samples with equal grain sizes and different oxygen vacancy concentrations. Her research shows that the phases present in these samples varied, leading to the conclusion that oxygen vacancy concentration is more important than grain size.

Jaszewski first-authored the paper, which was co-authored by group members Fields and Salanova with collaborators in many research groups within and outside of UVA. Jaszewski’s research is funded by her National Science Foundation graduate research fellowship and the Semiconductor Research Corporation.

Jaszewski is deepening her inquiry into hafnium oxides to explain the material’s response to the application of an electric field. In the semiconductor industry, this phenomenon is referred to as wake-up and fatigue.

“When you apply an electric field to this material, the ferroelectric properties increase, or ‘wake-up.” As you continue to apply the electric field, the ferroelectric properties degrade, in a process known as fatigue,” Jaszewski said.

She has found that when an electric field is initially applied, it boosts the ferroelectric structure, but there are diminishing returns.

“As you continue to apply the field the ferroelectric properties degrade,” Jaszewski said.

The next step is investigating how the oxygen atoms’ choreography in the material contributes to wake-up and fatigue, which requires study of where vacancies are located dynamically.

“These landmark studies explain why ferroelectric hafnium oxide exists and how it stabilizes,” Ihlefeld said. “Based on these new findings, we can engineer hafnium oxide thin films to be even more stable and perform even better in an actual application. By doing this fundamental research we can help semiconductor firms understand the origin of problems and how to prevent them in future production lines.”


Source: Karen Walker, University of Virginia School of Engineering and Applied Science & phys.org

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire