ESnet’s Science DMZ Design Could Help Transfer, Protect Medical Research Data

October 17, 2017

Oct. 17, 2017 — Like other sciences, medical research is generating increasingly large datasets as doctors track health trends, the spread of diseases, genetic causes of illness and the like. Effectively using this data for efforts ranging from stopping the spread of deadly viruses to creating precision medicine treatments for individuals will be greatly accelerated by the secure sharing of the data, while also protecting individual privacy.

In a paper published Friday, Oct. 6 by the Journal of the American Medical Informatics Association, a group of researchers led by Sean Peisert of the Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) wrote that the Science DMZ architecture developed for moving large data sets quick and securely could be adapted to meet the needs of the medical research community.

The Science DMZ traces its name to an element of network security architecture. Typically, located at the network perimeter, a DMZ has its own security policy because of its dedicated purpose – exchanging data with the outside world.

Exponentially increasing amounts of data from genomics, high quality imaging and other clinical data sets could provide valuable resources for preventing and treating medical conditions. But unlike most scientific data, medical information is subject to strict privacy protections under the Health Insurance Portability and Accountability Act (HIPAA) so any sharing of data must ensure that these protections are met.

Image courtesy of Lawrence Berkeley National Lab.

“You can’t just take the medical data from one site and drop it straight in to another site because of the policy constraints on that data,” said Eli Dart, a network engineer at the Department of Energy’s Energy Sciences Network (ESnet) who is a co-author of the paper. “But as members of a society, our health could benefit if the medical science community can become more productive in terms of accessing relevant data.”

For example, an authenticated user could query a very large data base stored at multiple sites to learn more about an emerging medical issue, such as the appearance of a new virus, said Peisert, who works in Berkeley Lab’s Computational Research Division. In this way, teams of widely dispersed experts could collaborate in real-time to address the problem.

According to the authors of the paper, the storage, analysis and network resources needed to handle the data and integrate it into patient diagnoses and treatments have grown so much that they strain the capabilities of academic health centers. At the same time, shared data repositories like those at the National Library of Medicine, the National Cancer Institute and international partners such as the European Bioinformatics Institute are rapidly growing.

“But by implementing a Medical Science DMZ architecture, we believe biomedical researchers can leverage the scale provided by high performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements,” Peisert said. “Access would of course need to be properly authenticated, but unlocking the world’s medical information could yield enormous benefits.”

The authors define a “Medical Science DMZ” as “a method or approach that allows data flows at scale while simultaneously addressing the HIPAA Security Rule and related regulations governing biomedical data and appropriately managing risk.” Their network design pattern addresses Big Data and can be implemented using a combination of physical, administrative and technical safeguards.

The paper was written as the National Institutes of Health (NIH) are spearheading a “Commons Initiative” for sharing data; the NIH have long provided reference data through the National Library of Medicine. The National Cancer Institute funded a number of pilot projects to use cloud computing for cancer genomics in 2016, and the initiative has since continued and expanded beyond the pilot phase.s. Many universities with high-performance computing facilities available are increasingly applying their capacity to biomedical research.

The Science DMZ network architecture, which is used by more than 100 research institutions across the country, provides speed and security for moving large data sets. Dart led the development of the Science DMZ concept, formalized it in 2010, and has been helping organizations deploy it ever since.

A Science DMZ is specifically dedicated to external-facing high-performance science services and is separate from an organization’s production network, which allows bulk science data transfers to be secured without inheriting the performance limitations of the infrastructure used to defend enterprise applications.

Data transfers using Science DMZs are straightforward from a network security perspective: the data transfer nodes (specially tuned servers) exchange security credentials to authenticate the transfer and then open several connections to move the specified data. One the job is completed, the connections close down. In the case of moving medical data, the information is encrypted both while it is being stored and while it’s moving across the network.

“There’s no magic,” Dart said. “The security is easy to manage in that the sites are known entities and nothing moves without proper security credentials.”

In fact, Dart said, such transfers pose less of a security problem than surfing the web on a personal computer connected to an open network. When someone browses a web site, the user’s computer downloads content from many different locations as specified by the web page, including ads that are sold and resold by firms around the world and may contain malware or other security threats. A data transfer between Science DMZs is a comparatively simple operation that doesn’t involve image rendering or media players (which are common attack surfaces), and only transfers data from approved endpoints.

In their paper, the authors present the details of three implementations and describe how they balance the key aspects of a Medical Science DMZ of high-throughput and regulatory compliance. Indiana University, Harvard University, and the University of Chicago all use a non-firewalled approach to moving HIPAA-protected data in their Medical Science DMZs. Each site has implemented frameworks that allow free flow of data where needed and address HIPAA using alternate, reasonable and appropriate controls that manage risk.

In each case the data transfers are encrypted, and can only be initiated by authenticated and authorized users. The interactive network traffic needed to initiate such transfers still passes through one or more systems that are heavily protected and monitored. Although firewalls are not removed entirely from the system, they are used intelligently and overall system security is maintained while still permitting the transfer of sensitive data, such as large biomedical datasets.

“We wrote this paper as a starting point,” Peisert said, “and hope that it will allow a lot of great things to happen.”

ESnet is a DOE Office of Science User Facility. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.


Source: Lawrence Berkeley National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This