ESnet’s Science DMZ Design Could Help Transfer, Protect Medical Research Data

October 17, 2017

Oct. 17, 2017 — Like other sciences, medical research is generating increasingly large datasets as doctors track health trends, the spread of diseases, genetic causes of illness and the like. Effectively using this data for efforts ranging from stopping the spread of deadly viruses to creating precision medicine treatments for individuals will be greatly accelerated by the secure sharing of the data, while also protecting individual privacy.

In a paper published Friday, Oct. 6 by the Journal of the American Medical Informatics Association, a group of researchers led by Sean Peisert of the Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) wrote that the Science DMZ architecture developed for moving large data sets quick and securely could be adapted to meet the needs of the medical research community.

The Science DMZ traces its name to an element of network security architecture. Typically, located at the network perimeter, a DMZ has its own security policy because of its dedicated purpose – exchanging data with the outside world.

Exponentially increasing amounts of data from genomics, high quality imaging and other clinical data sets could provide valuable resources for preventing and treating medical conditions. But unlike most scientific data, medical information is subject to strict privacy protections under the Health Insurance Portability and Accountability Act (HIPAA) so any sharing of data must ensure that these protections are met.

Image courtesy of Lawrence Berkeley National Lab.

“You can’t just take the medical data from one site and drop it straight in to another site because of the policy constraints on that data,” said Eli Dart, a network engineer at the Department of Energy’s Energy Sciences Network (ESnet) who is a co-author of the paper. “But as members of a society, our health could benefit if the medical science community can become more productive in terms of accessing relevant data.”

For example, an authenticated user could query a very large data base stored at multiple sites to learn more about an emerging medical issue, such as the appearance of a new virus, said Peisert, who works in Berkeley Lab’s Computational Research Division. In this way, teams of widely dispersed experts could collaborate in real-time to address the problem.

According to the authors of the paper, the storage, analysis and network resources needed to handle the data and integrate it into patient diagnoses and treatments have grown so much that they strain the capabilities of academic health centers. At the same time, shared data repositories like those at the National Library of Medicine, the National Cancer Institute and international partners such as the European Bioinformatics Institute are rapidly growing.

“But by implementing a Medical Science DMZ architecture, we believe biomedical researchers can leverage the scale provided by high performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements,” Peisert said. “Access would of course need to be properly authenticated, but unlocking the world’s medical information could yield enormous benefits.”

The authors define a “Medical Science DMZ” as “a method or approach that allows data flows at scale while simultaneously addressing the HIPAA Security Rule and related regulations governing biomedical data and appropriately managing risk.” Their network design pattern addresses Big Data and can be implemented using a combination of physical, administrative and technical safeguards.

The paper was written as the National Institutes of Health (NIH) are spearheading a “Commons Initiative” for sharing data; the NIH have long provided reference data through the National Library of Medicine. The National Cancer Institute funded a number of pilot projects to use cloud computing for cancer genomics in 2016, and the initiative has since continued and expanded beyond the pilot phase.s. Many universities with high-performance computing facilities available are increasingly applying their capacity to biomedical research.

The Science DMZ network architecture, which is used by more than 100 research institutions across the country, provides speed and security for moving large data sets. Dart led the development of the Science DMZ concept, formalized it in 2010, and has been helping organizations deploy it ever since.

A Science DMZ is specifically dedicated to external-facing high-performance science services and is separate from an organization’s production network, which allows bulk science data transfers to be secured without inheriting the performance limitations of the infrastructure used to defend enterprise applications.

Data transfers using Science DMZs are straightforward from a network security perspective: the data transfer nodes (specially tuned servers) exchange security credentials to authenticate the transfer and then open several connections to move the specified data. One the job is completed, the connections close down. In the case of moving medical data, the information is encrypted both while it is being stored and while it’s moving across the network.

“There’s no magic,” Dart said. “The security is easy to manage in that the sites are known entities and nothing moves without proper security credentials.”

In fact, Dart said, such transfers pose less of a security problem than surfing the web on a personal computer connected to an open network. When someone browses a web site, the user’s computer downloads content from many different locations as specified by the web page, including ads that are sold and resold by firms around the world and may contain malware or other security threats. A data transfer between Science DMZs is a comparatively simple operation that doesn’t involve image rendering or media players (which are common attack surfaces), and only transfers data from approved endpoints.

In their paper, the authors present the details of three implementations and describe how they balance the key aspects of a Medical Science DMZ of high-throughput and regulatory compliance. Indiana University, Harvard University, and the University of Chicago all use a non-firewalled approach to moving HIPAA-protected data in their Medical Science DMZs. Each site has implemented frameworks that allow free flow of data where needed and address HIPAA using alternate, reasonable and appropriate controls that manage risk.

In each case the data transfers are encrypted, and can only be initiated by authenticated and authorized users. The interactive network traffic needed to initiate such transfers still passes through one or more systems that are heavily protected and monitored. Although firewalls are not removed entirely from the system, they are used intelligently and overall system security is maintained while still permitting the transfer of sensitive data, such as large biomedical datasets.

“We wrote this paper as a starting point,” Peisert said, “and hope that it will allow a lot of great things to happen.”

ESnet is a DOE Office of Science User Facility. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.


Source: Lawrence Berkeley National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This