ExaHyPE Research Project Developing Software for Exascale-Class Supercomputers

October 28, 2015

MUNICH, Germany, Oct. 28 — A billion billion, i.e. 1018 computer operations per second (1 exaflop/s) is the level of performance that the next generation of supercomputers should be able to deliver. However, programming such supercomputers is a challenge. In October 2015, the European Commission began funding ”ExaHyPE”, an international project coordinated at the Technische Universität München (TUM), which seeks to establish the algorithmic foundations for exascale supercomputers in the next four years. The aim is to develop novel software, initially for simulations in geophysics and astrophysics, which will be published as open-source software for further use. The grant totals EUR 2.8 million.

Computer-based simulations drive progress in the field of science. In addition to theory and experiments, simulations have long since been crucial for acquiring knowledge and insight. Supercomputers allow for the computation of increasingly complex and precise models. The EU ExaHyPE (“An Exascale Hyperbolic PDE Engine”) project has an interdisciplinary team of researchers from seven institutions in Germany, Italy, the United Kingdom, and Russia, and integrates well into Europe’s strategy for developing an exascale-class supercomputer by 2020. In order to be able to leverage the incredible processing power of exascale systems for correspondingly comprehensive simulation tasks, the entire supercomputing infrastructure, including the software, must be prepared for such systems.

Powerful, flexible and energy-efficient

Supercomputing of the future poses immense challenges for the ExaHyPE researchers. Currently, the biggest obstacle for achieving exascale computing is energy consumption. Today, the world’s fastest supercomputers – Tianhe-2 (China), Titan (US), Sequoia (US) and the K Computer (Japan) – operate in the petaflop/s range (1015 computer operations per second) and require between 8 and 18 megawatts (source: www.top500.org), with the energy costs amounting to about US$ 1 million per megawatt and year. “Based on current technologies, an exascale computer with a demand of close to 70 megawatts would represent both a financial and an infrastructural challenge,” explains ExaHyPE coordinator Professor Michael Bader of TUM. “That is why simulation software developed as part of the ExaHyPE project will be consistently designed for the requirements of future energy-efficient hardware.”

On the hardware side, an extreme parallelization is to be expected. “By 2020 supercomputers will encompass hundreds of millions processor cores,” Bader adds. “At the same time, the hardware – which is pushed to its physical limits to achieve the further increase in performance and still must run as energy efficiently as possible – will increasingly tend to be plagued with interruptions and fluctuating performance curves. ExaHyPE will consequently examine the dynamic distribution of computer operations to processor cores – even if these fail while performing calculations.”

Another objective is to reduce the internal-hardware communication simultaneously with the parallelization. Each data transfer is implemented at the expense of energy consumption. In ten years, supercomputers will be able to run calculations 1000 times faster than today. However, memory access time will fail to evolve at the same rate. The used algorithms should be inherently memory-efficient and require as little data transfer as possible to ensure fast, energy-efficient computer operations.

In order to take full advantage of the smallest possible amount of memory, the consortium is developing new scalable algorithms, which dynamically increase the resolution of simulations, i.e. the implemented numerical observation points, wherever the computer simulation needs – and only there. As a result, scientists will be able to limit the necessary computer operations to a minimum while simultaneously achieving the greatest possible accuracy for the simulation.

Two application scenarios: Earthquakes and gamma ray explosions

The ExaHyPE researchers will prepare the new algorithms based on two application scenarios taken from geophysics (earthquakes) and astrophysics (gamma ray explosions). Earthquakes cannot be predicted. However, simulations carried out on exascale supercomputers could help us to better assess the risk of aftershocks. Regional earthquake simulations promise to provide a better understanding of what takes place during large-scale earthquakes and their aftershocks. In the field of astrophysics, ExaHyPE systems will simulate orbiting neutron stars which are merging. Such systems are not only suspected of being the greatest source of gravitational waves but could also be the cause of ”gamma ray explosions”. Exascale simulations should allow us to study these long-standing mysteries of astrophysics and see them in a new light.

In spite of the two precisely defined areas of application, the researchers want to keep the new algorithms as general as possible so that they may also be used in other disciplines after making corresponding adaptations. Examples could include the simulation of climate and weather phenomena, the complex flow and combustion processes in engineering sciences, or even the forecasting of natural catastrophes like tsunamis or floods. “Our objective is to ensure that medium-size, interdisciplinary research teams are able to adapt the simulation software for their specific purposes within a year of its release,” Bader says. To guarantee a rapid dissemination of the new technology, the consortium will release it as open source software.

Comprehensive expertise through international, interdisciplinary cooperation

The ExaHyPE project objectives call for an intensive cooperation of experts across many disciplines and country borders. On the German side, the consortium includes the Technische Universität München (Prof. Dr. Michael Bader, Informatics Department, High Performance Computing), the Frankfurt Institute for Advanced Studies (Prof. Dr. Luciano Rezzolla, Institute for Theoretical Physics, Goethe Universität Frankfurt), the Ludwig-Maximilians-Universität München (Dr. Alice-Agnes Gabriel and Prof. Dr. Heiner Igel, Department of Earth and Environmental Sciences), and the Bavarian Research Alliance (Dipl.-Ing. Robert Iberl, Unit for Information & Communication Technologies). Italy is represented by Università degli Studi di Trento (Prof. Dr. Michael Dumbser, Dipartimento di Ingegneria Civile Ambientale e Meccanica) and the United Kingdom by Durham University (Dr. Tobias Weinzierl, School of Engineering and Computing Sciences). The consortium is supplemented by the Russian supercomputer vendor ZAO RSC Technologies (Alexander Moskovsky, CEO).

About the Bavarian Research Alliance (BayFOR)

The Bavarian Research Alliance GmbH provided the ExaHyPE consortium with extensive support during the application phase and assisted in the drafting of the contract with the European Commission. In the current project, BayFOR will assume responsibility for project management and the dissemination of scientific results. BayFOR is an organization whose purpose is to promote Bavaria as a centre for science and innovation within the European Research Area. It supports and advises Bavarian scientists and stakeholders from the private sector on European research, development and innovation funds. The focus is directed at the Framework Programme for Research and Innovation “Horizon 2020”. As a partner in the network for SMEs “Enterprise Europe Network” (EEN), BayFOR provides specific advice for SMEs which are interested in EU research and innovation projects. BayFOR is a partner institution in the Bavarian “Haus der Forschung” (www.hausderforschung.bayern.de/en) and is supported by the Bavarian State Ministry of Education, Science and the Arts. For further information please visit www.bayfor.org/english.

Source: BayFOR

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire