ExaHyPE Research Project Developing Software for Exascale-Class Supercomputers

October 28, 2015

MUNICH, Germany, Oct. 28 — A billion billion, i.e. 1018 computer operations per second (1 exaflop/s) is the level of performance that the next generation of supercomputers should be able to deliver. However, programming such supercomputers is a challenge. In October 2015, the European Commission began funding ”ExaHyPE”, an international project coordinated at the Technische Universität München (TUM), which seeks to establish the algorithmic foundations for exascale supercomputers in the next four years. The aim is to develop novel software, initially for simulations in geophysics and astrophysics, which will be published as open-source software for further use. The grant totals EUR 2.8 million.

Computer-based simulations drive progress in the field of science. In addition to theory and experiments, simulations have long since been crucial for acquiring knowledge and insight. Supercomputers allow for the computation of increasingly complex and precise models. The EU ExaHyPE (“An Exascale Hyperbolic PDE Engine”) project has an interdisciplinary team of researchers from seven institutions in Germany, Italy, the United Kingdom, and Russia, and integrates well into Europe’s strategy for developing an exascale-class supercomputer by 2020. In order to be able to leverage the incredible processing power of exascale systems for correspondingly comprehensive simulation tasks, the entire supercomputing infrastructure, including the software, must be prepared for such systems.

Powerful, flexible and energy-efficient

Supercomputing of the future poses immense challenges for the ExaHyPE researchers. Currently, the biggest obstacle for achieving exascale computing is energy consumption. Today, the world’s fastest supercomputers – Tianhe-2 (China), Titan (US), Sequoia (US) and the K Computer (Japan) – operate in the petaflop/s range (1015 computer operations per second) and require between 8 and 18 megawatts (source: www.top500.org), with the energy costs amounting to about US$ 1 million per megawatt and year. “Based on current technologies, an exascale computer with a demand of close to 70 megawatts would represent both a financial and an infrastructural challenge,” explains ExaHyPE coordinator Professor Michael Bader of TUM. “That is why simulation software developed as part of the ExaHyPE project will be consistently designed for the requirements of future energy-efficient hardware.”

On the hardware side, an extreme parallelization is to be expected. “By 2020 supercomputers will encompass hundreds of millions processor cores,” Bader adds. “At the same time, the hardware – which is pushed to its physical limits to achieve the further increase in performance and still must run as energy efficiently as possible – will increasingly tend to be plagued with interruptions and fluctuating performance curves. ExaHyPE will consequently examine the dynamic distribution of computer operations to processor cores – even if these fail while performing calculations.”

Another objective is to reduce the internal-hardware communication simultaneously with the parallelization. Each data transfer is implemented at the expense of energy consumption. In ten years, supercomputers will be able to run calculations 1000 times faster than today. However, memory access time will fail to evolve at the same rate. The used algorithms should be inherently memory-efficient and require as little data transfer as possible to ensure fast, energy-efficient computer operations.

In order to take full advantage of the smallest possible amount of memory, the consortium is developing new scalable algorithms, which dynamically increase the resolution of simulations, i.e. the implemented numerical observation points, wherever the computer simulation needs – and only there. As a result, scientists will be able to limit the necessary computer operations to a minimum while simultaneously achieving the greatest possible accuracy for the simulation.

Two application scenarios: Earthquakes and gamma ray explosions

The ExaHyPE researchers will prepare the new algorithms based on two application scenarios taken from geophysics (earthquakes) and astrophysics (gamma ray explosions). Earthquakes cannot be predicted. However, simulations carried out on exascale supercomputers could help us to better assess the risk of aftershocks. Regional earthquake simulations promise to provide a better understanding of what takes place during large-scale earthquakes and their aftershocks. In the field of astrophysics, ExaHyPE systems will simulate orbiting neutron stars which are merging. Such systems are not only suspected of being the greatest source of gravitational waves but could also be the cause of ”gamma ray explosions”. Exascale simulations should allow us to study these long-standing mysteries of astrophysics and see them in a new light.

In spite of the two precisely defined areas of application, the researchers want to keep the new algorithms as general as possible so that they may also be used in other disciplines after making corresponding adaptations. Examples could include the simulation of climate and weather phenomena, the complex flow and combustion processes in engineering sciences, or even the forecasting of natural catastrophes like tsunamis or floods. “Our objective is to ensure that medium-size, interdisciplinary research teams are able to adapt the simulation software for their specific purposes within a year of its release,” Bader says. To guarantee a rapid dissemination of the new technology, the consortium will release it as open source software.

Comprehensive expertise through international, interdisciplinary cooperation

The ExaHyPE project objectives call for an intensive cooperation of experts across many disciplines and country borders. On the German side, the consortium includes the Technische Universität München (Prof. Dr. Michael Bader, Informatics Department, High Performance Computing), the Frankfurt Institute for Advanced Studies (Prof. Dr. Luciano Rezzolla, Institute for Theoretical Physics, Goethe Universität Frankfurt), the Ludwig-Maximilians-Universität München (Dr. Alice-Agnes Gabriel and Prof. Dr. Heiner Igel, Department of Earth and Environmental Sciences), and the Bavarian Research Alliance (Dipl.-Ing. Robert Iberl, Unit for Information & Communication Technologies). Italy is represented by Università degli Studi di Trento (Prof. Dr. Michael Dumbser, Dipartimento di Ingegneria Civile Ambientale e Meccanica) and the United Kingdom by Durham University (Dr. Tobias Weinzierl, School of Engineering and Computing Sciences). The consortium is supplemented by the Russian supercomputer vendor ZAO RSC Technologies (Alexander Moskovsky, CEO).

About the Bavarian Research Alliance (BayFOR)

The Bavarian Research Alliance GmbH provided the ExaHyPE consortium with extensive support during the application phase and assisted in the drafting of the contract with the European Commission. In the current project, BayFOR will assume responsibility for project management and the dissemination of scientific results. BayFOR is an organization whose purpose is to promote Bavaria as a centre for science and innovation within the European Research Area. It supports and advises Bavarian scientists and stakeholders from the private sector on European research, development and innovation funds. The focus is directed at the Framework Programme for Research and Innovation “Horizon 2020”. As a partner in the network for SMEs “Enterprise Europe Network” (EEN), BayFOR provides specific advice for SMEs which are interested in EU research and innovation projects. BayFOR is a partner institution in the Bavarian “Haus der Forschung” (www.hausderforschung.bayern.de/en) and is supported by the Bavarian State Ministry of Education, Science and the Arts. For further information please visit www.bayfor.org/english.

Source: BayFOR

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire