Exascale Computing Project Announces $48 Million to Establish Exascale Co-Design Centers

November 11, 2016

OAK RIDGE, Tenn., Nov. 11 — The Department of Energy’s Exascale Computing Project (ECP) today announced that it has selected four co-design centers as part of a 4 year, $48 million funding award. The first year is funded at $12 million, and is to be allocated evenly among the four award recipients.

The ECP is responsible for the planning, execution, and delivery of technologies necessary for a capable exascale ecosystem to support the nation’s exascale imperative including software, applications, hardware, and early testbed platforms.

According to Doug Kothe, ECP Director of Application Development, “Co-design lies at the heart of the Exascale Computing Project. ECP co-design, an intimate interchange of the best that hardware technologies, software technologies, and applications have to offer each other, will be a catalyst for delivery of exascale-enabling science and engineering solutions for the U.S.”  Kothe continued, “By targeting common patterns of computation and communication, known as “application motifs”, we are confident that these ECP co-design centers will knock down key performance barriers and pave the way for applications to exploit all that capable exascale has to offer.”

Exascale refers to computing systems at least 50 times faster than the nation’s most powerful supercomputers in use today.

The development of capable exascale systems requires an interdisciplinary engineering approach in which the developers of the software ecosystem, the hardware technology, and a new generation of computational science applications are collaboratively involved in a participatory design process referred to as co-design. The co-design process is paramount to ensuring that future exascale applications adequately reflect the complex interactions and trade-offs associated with the many new and sometimes conflicting design options, enabling these applications to tackle problems they currently can’t address.

According to ECP Director Paul Messina, “The establishment of these and future co‑design centers is foundational to the creation of an integrated, usable, and useful exascale ecosystem. After a lengthy review, we are pleased to announce that we have initially selected four proposals for funding. The establishment of these co-design centers, following on the heels of our recent application development awards, signals the momentum and direction of ECP as we bring together the necessary ecosystem and infrastructure to drive the nation’s exascale imperative.”

The four selected co-design proposals and their principal investigators are as follows:

CODAR: Co-Design Center for Online Data Analysis and Reduction at the Exascale. Principal Investigator: Ian Foster, Argonne National Laboratory Distinguished Fellow.

This co-design center will focus on overcoming the rapidly growing gap between compute speed and storage I/O rates by evaluating, deploying, and integrating novel online data analysis and reduction methods for the exascale. Working closely with Exascale Computing Program (ECP) applications, CODAR will undertake a focused co-design process that targets both common and domain-specific data analysis and reduction methods, with the goal of allowing application developers to choose and configure methods to output just the data needed by the application. CODAR will engage directly with providers of ECP hardware, system software, programming models, data analysis and reduction algorithms, and applications in order to better understand and guide tradeoffs in the development of exascale systems, applications, and software frameworks, given constraints relating to application development costs, application fidelity, performance portability, scalability, and power efficiency.

“Argonne is pleased to be leading CODAR efforts in support of the Exascale Computing Program,” said Argonne Distinguished Fellow Ian Foster. “We aim in CODAR to co-optimize applications, data services, and exascale platforms to deliver the right bits in the right place at the right time.”

Block-Structured AMR Co-Design Center. Principal Investigator: John Bell, Lawrence Berkeley National Laboratory.

The Block-Structured Adaptive Mesh Refinement Co-Design Center will be led by Lawrence Berkeley National Laboratory with support from Argonne National Laboratory and the National Renewable Energy Laboratory. The goal is to develop a new framework, AMReX, to support the development of block-structured adaptive mesh refinement (AMR) algorithms for solving systems of partial differential equations (PDE’s) with complex boundary conditions on exascale architectures.  Block-structured AMR provides a natural framework in which to focus computing power on the most critical parts of the problem in the most computationally efficient way possible. Block-structured AMR is already widely used to solve many problems relevant to DOE. Specifically, at least six of the 22 exascale application projects announced last month—in the areas of accelerators, astrophysics, combustion, cosmology, multiphase flow and subsurface flow—will rely on block-structured AMR as part of the ECP.

“This co-design center reflects the important role of adaptive mesh refinement in accurately simulating problems at scales ranging from the edges of flames to global climate to the makeup of the universe and how AMR will be critical to tackling problems at the exascale,” said David Brown, Director of Berkeley Lab’s Computational Research Division. “It’s also important to note that AMR will be a critical component in one third of the 22 exascale application projects announced in September, which will help ensure that researchers can make productive use of exascale systems when they are deployed.”

Center for Efficient Exascale Discretizations (CEED). Principal Investigator: Tzanio Kolev, Lawrence Livermore National Laboratory.

Fully exploiting future exascale architectures will require a rethinking of the algorithms used in the large scale applications that advance many science areas vital to DOE and NNSA, such as global climate modeling, turbulent combustion in internal combustion engines, nuclear reactor modeling, additive manufacturing, subsurface flow, and national security applications. The newly established Center for Efficient Exascale Discretizations (CEED) in DOE’s Exascale Computing Project (ECP) aims to help these DOE/NNSA applications to take full advantage of exascale hardware by using state-of-the-art ‘high-order discretizations’ that provide an order of magnitude performance improvement over traditional methods.

In simple mathematical terms, discretization denotes the process of dividing a geometry into finite elements, or building blocks, in preparation for analysis. This process, which can dramatically improve application performance, involves making simplifying assumptions to reduce demands on the computer, but with minimal loss of accuracy. Recent developments in supercomputing make it increasingly clear that the high-order discretizations, which CEED is focused on, have the potential to achieve optimal performance and deliver fast, efficient and accurate simulations on exascale systems.

The CEED Co-Design Center is a research partnership of two DOE labs and five universities. Partners include Lawrence Livermore National Laboratory; Argonne National Laboratory; the University of Illinois Urbana-Champaign; Virginia Tech; University of Tennessee, Knoxville; Colorado University, Boulder; and the Rensselaer Polytechnic Institute (RPI).

“The CEED team I have the privilege to lead is dedicated to the development of next-generation discretization software and algorithms that will enable a wide range of applications to run efficiently on future hardware,” said CEED director Tzanio Kolev of Lawrence Livermore National Laboratory.  “Our co-design center is focused first and foremost on applications. We bring to this enterprise a collaborative team of application scientists, computational mathematicians and computer scientists with a strong track record of delivering performant software on leading edge platforms. Collectively, we support hundreds of users in national labs, industry and academia and we are committed to pushing simulation capabilities to new levels across an ever-widening range of applications.”

Co-design center for Particle Applications (CoPA). Principal Investigator: Tim Germann, Los Alamos National Laboratory.

This co-design center will serve as a centralized clearinghouse for particle-based ECP applications, communicating their requirements and evaluating potential uses and benefits of ECP hardware and software technologies using proxy applications. Particle-based simulation approaches are ubiquitous in computational science and engineering, and they involve the interaction of each particle with its environment by direct particle-particle interactions at shorter ranges and/or by particle-mesh interactions with a local field that is set up by longer-range effects. Best practices in code portability, data layout and movement, and performance optimization will be developed and disseminated via sustainable, productive and interoperable co-designed numerical recipes for particle-based methods that meet the application requirements within the design space of software technologies and subject to exascale hardware constraints. The ultimate goal is the creation of scalable open exascale software platforms suitable for use by a variety of particle-based simulations.

“Los Alamos is delighted to be leading the Co-Design Center for Particle-Based Methods: From Quantum to Classical, Molecular to Cosmological, which builds on the success of ExMatEx, the Exascale CoDesign Center for Materials in Extreme Environments,” said John Sarrao, Associate Director for Theory, Simulation, and Computation at Los Alamos.  “Advancing deterministic particle-based methods is essential for simulations at the exascale, and Los Alamos has long believed that co-design is the right approach for advancing these frontiers. We look forward to partnering with our colleague Laboratories in successfully executing this important element of the Exascale Computing Project.”

About ECP

The ECP is a collaborative effort of two DOE organizations—the Office of Science and the National Nuclear Security Administration.  As part of President Obama’s National Strategic Computing initiative, ECP was established to develop a capable exascale ecosystem, encompassing applications, system software, hardware technologies and architectures, and workforce development to meet the scientific and national security mission needs of DOE in the mid-2020s time frame.

About the Office of Science

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

About NNSA

Established by Congress in 2000, NNSA is a semi-autonomous agency within the U.S. Department of Energy responsible for enhancing national security through the military application of nuclear science. NNSA maintains and enhances the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear explosive testing; works to reduce the global danger from weapons of mass destruction; provides the U.S. Navy with safe and effective nuclear propulsion; and responds to nuclear and radiological emergencies in the U.S. and abroad. https://nnsa.energy.gov


Source: The Exascale Computing Project

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a province in Pavia, Italy), and delivered “as-a-service” via H Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire