Exascale Computing Project Announces $48 Million to Establish Exascale Co-Design Centers

November 11, 2016

OAK RIDGE, Tenn., Nov. 11 — The Department of Energy’s Exascale Computing Project (ECP) today announced that it has selected four co-design centers as part of a 4 year, $48 million funding award. The first year is funded at $12 million, and is to be allocated evenly among the four award recipients.

The ECP is responsible for the planning, execution, and delivery of technologies necessary for a capable exascale ecosystem to support the nation’s exascale imperative including software, applications, hardware, and early testbed platforms.

According to Doug Kothe, ECP Director of Application Development, “Co-design lies at the heart of the Exascale Computing Project. ECP co-design, an intimate interchange of the best that hardware technologies, software technologies, and applications have to offer each other, will be a catalyst for delivery of exascale-enabling science and engineering solutions for the U.S.”  Kothe continued, “By targeting common patterns of computation and communication, known as “application motifs”, we are confident that these ECP co-design centers will knock down key performance barriers and pave the way for applications to exploit all that capable exascale has to offer.”

Exascale refers to computing systems at least 50 times faster than the nation’s most powerful supercomputers in use today.

The development of capable exascale systems requires an interdisciplinary engineering approach in which the developers of the software ecosystem, the hardware technology, and a new generation of computational science applications are collaboratively involved in a participatory design process referred to as co-design. The co-design process is paramount to ensuring that future exascale applications adequately reflect the complex interactions and trade-offs associated with the many new and sometimes conflicting design options, enabling these applications to tackle problems they currently can’t address.

According to ECP Director Paul Messina, “The establishment of these and future co‑design centers is foundational to the creation of an integrated, usable, and useful exascale ecosystem. After a lengthy review, we are pleased to announce that we have initially selected four proposals for funding. The establishment of these co-design centers, following on the heels of our recent application development awards, signals the momentum and direction of ECP as we bring together the necessary ecosystem and infrastructure to drive the nation’s exascale imperative.”

The four selected co-design proposals and their principal investigators are as follows:

CODAR: Co-Design Center for Online Data Analysis and Reduction at the Exascale. Principal Investigator: Ian Foster, Argonne National Laboratory Distinguished Fellow.

This co-design center will focus on overcoming the rapidly growing gap between compute speed and storage I/O rates by evaluating, deploying, and integrating novel online data analysis and reduction methods for the exascale. Working closely with Exascale Computing Program (ECP) applications, CODAR will undertake a focused co-design process that targets both common and domain-specific data analysis and reduction methods, with the goal of allowing application developers to choose and configure methods to output just the data needed by the application. CODAR will engage directly with providers of ECP hardware, system software, programming models, data analysis and reduction algorithms, and applications in order to better understand and guide tradeoffs in the development of exascale systems, applications, and software frameworks, given constraints relating to application development costs, application fidelity, performance portability, scalability, and power efficiency.

“Argonne is pleased to be leading CODAR efforts in support of the Exascale Computing Program,” said Argonne Distinguished Fellow Ian Foster. “We aim in CODAR to co-optimize applications, data services, and exascale platforms to deliver the right bits in the right place at the right time.”

Block-Structured AMR Co-Design Center. Principal Investigator: John Bell, Lawrence Berkeley National Laboratory.

The Block-Structured Adaptive Mesh Refinement Co-Design Center will be led by Lawrence Berkeley National Laboratory with support from Argonne National Laboratory and the National Renewable Energy Laboratory. The goal is to develop a new framework, AMReX, to support the development of block-structured adaptive mesh refinement (AMR) algorithms for solving systems of partial differential equations (PDE’s) with complex boundary conditions on exascale architectures.  Block-structured AMR provides a natural framework in which to focus computing power on the most critical parts of the problem in the most computationally efficient way possible. Block-structured AMR is already widely used to solve many problems relevant to DOE. Specifically, at least six of the 22 exascale application projects announced last month—in the areas of accelerators, astrophysics, combustion, cosmology, multiphase flow and subsurface flow—will rely on block-structured AMR as part of the ECP.

“This co-design center reflects the important role of adaptive mesh refinement in accurately simulating problems at scales ranging from the edges of flames to global climate to the makeup of the universe and how AMR will be critical to tackling problems at the exascale,” said David Brown, Director of Berkeley Lab’s Computational Research Division. “It’s also important to note that AMR will be a critical component in one third of the 22 exascale application projects announced in September, which will help ensure that researchers can make productive use of exascale systems when they are deployed.”

Center for Efficient Exascale Discretizations (CEED). Principal Investigator: Tzanio Kolev, Lawrence Livermore National Laboratory.

Fully exploiting future exascale architectures will require a rethinking of the algorithms used in the large scale applications that advance many science areas vital to DOE and NNSA, such as global climate modeling, turbulent combustion in internal combustion engines, nuclear reactor modeling, additive manufacturing, subsurface flow, and national security applications. The newly established Center for Efficient Exascale Discretizations (CEED) in DOE’s Exascale Computing Project (ECP) aims to help these DOE/NNSA applications to take full advantage of exascale hardware by using state-of-the-art ‘high-order discretizations’ that provide an order of magnitude performance improvement over traditional methods.

In simple mathematical terms, discretization denotes the process of dividing a geometry into finite elements, or building blocks, in preparation for analysis. This process, which can dramatically improve application performance, involves making simplifying assumptions to reduce demands on the computer, but with minimal loss of accuracy. Recent developments in supercomputing make it increasingly clear that the high-order discretizations, which CEED is focused on, have the potential to achieve optimal performance and deliver fast, efficient and accurate simulations on exascale systems.

The CEED Co-Design Center is a research partnership of two DOE labs and five universities. Partners include Lawrence Livermore National Laboratory; Argonne National Laboratory; the University of Illinois Urbana-Champaign; Virginia Tech; University of Tennessee, Knoxville; Colorado University, Boulder; and the Rensselaer Polytechnic Institute (RPI).

“The CEED team I have the privilege to lead is dedicated to the development of next-generation discretization software and algorithms that will enable a wide range of applications to run efficiently on future hardware,” said CEED director Tzanio Kolev of Lawrence Livermore National Laboratory.  “Our co-design center is focused first and foremost on applications. We bring to this enterprise a collaborative team of application scientists, computational mathematicians and computer scientists with a strong track record of delivering performant software on leading edge platforms. Collectively, we support hundreds of users in national labs, industry and academia and we are committed to pushing simulation capabilities to new levels across an ever-widening range of applications.”

Co-design center for Particle Applications (CoPA). Principal Investigator: Tim Germann, Los Alamos National Laboratory.

This co-design center will serve as a centralized clearinghouse for particle-based ECP applications, communicating their requirements and evaluating potential uses and benefits of ECP hardware and software technologies using proxy applications. Particle-based simulation approaches are ubiquitous in computational science and engineering, and they involve the interaction of each particle with its environment by direct particle-particle interactions at shorter ranges and/or by particle-mesh interactions with a local field that is set up by longer-range effects. Best practices in code portability, data layout and movement, and performance optimization will be developed and disseminated via sustainable, productive and interoperable co-designed numerical recipes for particle-based methods that meet the application requirements within the design space of software technologies and subject to exascale hardware constraints. The ultimate goal is the creation of scalable open exascale software platforms suitable for use by a variety of particle-based simulations.

“Los Alamos is delighted to be leading the Co-Design Center for Particle-Based Methods: From Quantum to Classical, Molecular to Cosmological, which builds on the success of ExMatEx, the Exascale CoDesign Center for Materials in Extreme Environments,” said John Sarrao, Associate Director for Theory, Simulation, and Computation at Los Alamos.  “Advancing deterministic particle-based methods is essential for simulations at the exascale, and Los Alamos has long believed that co-design is the right approach for advancing these frontiers. We look forward to partnering with our colleague Laboratories in successfully executing this important element of the Exascale Computing Project.”

About ECP

The ECP is a collaborative effort of two DOE organizations—the Office of Science and the National Nuclear Security Administration.  As part of President Obama’s National Strategic Computing initiative, ECP was established to develop a capable exascale ecosystem, encompassing applications, system software, hardware technologies and architectures, and workforce development to meet the scientific and national security mission needs of DOE in the mid-2020s time frame.

About the Office of Science

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

About NNSA

Established by Congress in 2000, NNSA is a semi-autonomous agency within the U.S. Department of Energy responsible for enhancing national security through the military application of nuclear science. NNSA maintains and enhances the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear explosive testing; works to reduce the global danger from weapons of mass destruction; provides the U.S. Navy with safe and effective nuclear propulsion; and responds to nuclear and radiological emergencies in the U.S. and abroad. https://nnsa.energy.gov


Source: The Exascale Computing Project

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire