Exascale Computing Project Highlights Its ‘EXAALT’ Molecular Dynamics Effort

March 15, 2019

March 15, 2019 — Researchers can run computer simulations of the physical movements of atoms and molecules and make inferences about the dynamic evolution of the system. This method of simulation, called molecular dynamics, is used at many computing centers across the country in areas such as materials science and biology. These simulations can yield extremely detailed understanding of the mechanisms by which materials evolve in time and in response to external stimuli. However, exascale computing will require a comprehensive molecular dynamics capability with greater versatility.

The coming exascale computing systems will create the necessity for new molecular dynamics codes to take advantage of the leap in power and performance. In fact, if today’s molecular dynamics codes were run on an exascale machine, larger numbers of atoms and molecules could be simulated, but longer times could not.

The reason for the limitation is that conventional algorithms exploit large computers by decomposing space into small cells and putting individual processors in charge of each one. This approach works well if cells are large, but if they become too small because atoms are spread thin across compute resources in an effort to further increase the simulation speed, the overhead of synchronizing the work over different cells begins to dominate, and performance plummets. This impediment has, for many years, confined improvement in simulation times.

Overcoming the Limitations

A US Department of Energy (DOE) Exascale Computing Project (ECP) effort called EXAALT (Exascale Atomistic Capability for Accuracy, Length, and Time) is endeavoring to push past the current limitations and allow for simulations with not only longer length scales but also longer time scales and higher accuracy.

Computationally, EXAALT’s goal is to develop a comprehensive molecular dynamics capability for exascale.

“The user should be able to say, ‘I’m interested in this kind of system size, timescale, and accuracy,’ and directly access the regime without being constrained by the usual scaling paths of current codes,” said Danny Perez of Los Alamos National Laboratory (LANL) and the EXAALT team.

When simulating the evolution of materials, accessing very long times can be crucial. For example, in the case of the growth of helium bubbles in the walls of nuclear fusion reactors, imposing fast growth rates leads to drastically different predictions than when using EXAALT to extend the simulation to timescales that are closer to realistic conditions. Courtesy: the EXAALT project

Users need such a capability to understand materials for nuclear energy, both nuclear fuels in fission power plants and on the walls of fusion reactors.

“We aim to build a comprehensive capability and demonstrate it on nuclear applications, but, really, it’s a very general framework that anybody else in materials science should be able to use,” Perez said.

One of EXAALT’s main targets is to allow for the development of better materials, because the national need is so great. For example, hundreds of millions of tons of metal are consumed in the United States each year. However, the development process for a new material takes a long time and is error prone.

“We hope that exascale will give us the ability to run simulations directly in the conditions that are relevant to the applications,” Perez said. “This will really help in terms of the design and testing of novel materials, which is important in scientific discovery, but also for industrial research. And since we focus on materials in extreme conditions, our work has impact on the national security side of DOE’s mission as well.”

Providing a Versatile Product

The EXAALT project has produced and released an open source software package that integrates three large pieces of code developed at LANL and Sandia National Laboratories (SNL): ParSplice, an accelerated molecular dynamics module; LAMMPS, a well-known molecular dynamics code; and LATTE, a LANL-produced code.

The integrated code is designed to allow for molecular dynamics simulations with longer timescales (via ParSplice), huge systems of atoms and molecules (via LAMMPS), and high-accuracy semi-empirical quantum capability (via LATTE), to make approximations and obtain some parameters from empirical data. In time, users will be able to dial in the regime they are interested in, set up their system, and then launch EXAALT on a large machine.

“EXAALT has made tremendous progress in the last year,” Perez said. “A focus has been on the development of methods that can simulate intermediate-size systems for long times. This regime is very relevant to many applications in materials science, such as the evolution of the walls of fusion reactors.”

A Solution for Intermediate-Size Systems

Perez explained that simulating intermediate-size systems is difficult. He said the reason is that it requires systems that are too small to fully utilize an exascale machine with traditional molecular dynamics tools, yet too large for conventional accelerated molecular dynamics methods. The waiting times between morphological changes anywhere in the system, he said, become so short that the simulation cannot be further accelerated.

“The EXAALT team has implemented a generalization of the ParSplice method that allows for different sections of the systems to be accelerated separately in short bursts before being synchronized back together,” Perez said. “In this case, the efficiency of ParSplice becomes controlled by the timescale over which morphological changes occur locally in each section and not by the much shorter global timescale. This allows for much better performance.”

To demonstrate the scalability of this approach to the application of accelerated dynamics methods, the team has run at scale using 270,000 cores on the Theta supercomputer at the Argonne Leadership Computing Facility. This simulation also employed a new generation of materials model that the team is developing. In addition, the EXAALT team demonstrated quantum simulations of nuclear fuels at scale—again using 270,000 cores on Theta—by employing a combination of ParSplice, LAMMPS, and LATTE.

Near-Term Plans

A key next step is to ensure that EXAALT can make the most of the latest computer architectures that rely heavily on accelerators, such as GPUs, to deliver very high simulation rates. This requires the careful redesign and optimization of key components of EXAALT. This essential effort is currently ongoing in collaboration with different projects within ECP and with the National Energy Research Scientific Computing Center.


Souce: Exascale Computing Project

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the Read more…

By Tiffany Trader

Microsoft’s Azure Quantum Platform Now Offers Toshiba’s ‘Simulated Bifurcation Machine’

September 22, 2020

While pure-play quantum computing (QC) gets most of the QC-related attention, there’s also been steady progress adapting quantum methods for select use on classical computers. Today, Microsoft announced that Toshiba’ Read more…

By John Russell

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availability of instances with Nvidia’s newest GPU, the A100. OCI als Read more…

By John Russell

IBM, CQC Enable Cloud-based Quantum Random Number Generation

September 21, 2020

IBM and Cambridge Quantum Computing (CQC) have partnered to achieve progress on one of the major business aspirations for quantum computing – the goal of generating verified, truly random numbers that can be used for a Read more…

By Todd R. Weiss

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at current count) across the European Union and supplanting HPC Read more…

By Oliver Peckham

AWS Solution Channel

Next-generation aerospace modeling and simulation: benchmarking Amazon Web Services High Performance Computing services

The aerospace industry has been using Computational Fluid Dynamics (CFD) for decades to create and optimize designs digitally, from the largest passenger planes and fighter jets to gliders and drones. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for high-performance computing, a newly created position that is a Read more…

By Tiffany Trader

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s seco Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Nvidia Commits to Buy Arm for $40B

September 14, 2020

Nvidia is acquiring semiconductor design company Arm Ltd. for $40 billion from SoftBank in a blockbuster deal that catapults the GPU chipmaker to a dominant position in the datacenter while helping troubled SoftBank reverse its financial woes. The deal, which has been rumored for... Read more…

By Todd R. Weiss and George Leopold

AMD’s Massive COVID-19 HPC Fund Adds 18 Institutions, 5 Petaflops of Power

September 14, 2020

Almost exactly five months ago, AMD announced its COVID-19 HPC Fund, an ongoing flow of resources and equipment to research institutions studying COVID-19 that began with an initial donation of $15 million. In June, AMD announced major equipment donations to several major institutions. Now, AMD is making its third major COVID-19 HPC Fund... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This