Exascale Computing Project Highlights Its ‘EXAALT’ Molecular Dynamics Effort

March 15, 2019

March 15, 2019 — Researchers can run computer simulations of the physical movements of atoms and molecules and make inferences about the dynamic evolution of the system. This method of simulation, called molecular dynamics, is used at many computing centers across the country in areas such as materials science and biology. These simulations can yield extremely detailed understanding of the mechanisms by which materials evolve in time and in response to external stimuli. However, exascale computing will require a comprehensive molecular dynamics capability with greater versatility.

The coming exascale computing systems will create the necessity for new molecular dynamics codes to take advantage of the leap in power and performance. In fact, if today’s molecular dynamics codes were run on an exascale machine, larger numbers of atoms and molecules could be simulated, but longer times could not.

The reason for the limitation is that conventional algorithms exploit large computers by decomposing space into small cells and putting individual processors in charge of each one. This approach works well if cells are large, but if they become too small because atoms are spread thin across compute resources in an effort to further increase the simulation speed, the overhead of synchronizing the work over different cells begins to dominate, and performance plummets. This impediment has, for many years, confined improvement in simulation times.

Overcoming the Limitations

A US Department of Energy (DOE) Exascale Computing Project (ECP) effort called EXAALT (Exascale Atomistic Capability for Accuracy, Length, and Time) is endeavoring to push past the current limitations and allow for simulations with not only longer length scales but also longer time scales and higher accuracy.

Computationally, EXAALT’s goal is to develop a comprehensive molecular dynamics capability for exascale.

“The user should be able to say, ‘I’m interested in this kind of system size, timescale, and accuracy,’ and directly access the regime without being constrained by the usual scaling paths of current codes,” said Danny Perez of Los Alamos National Laboratory (LANL) and the EXAALT team.

When simulating the evolution of materials, accessing very long times can be crucial. For example, in the case of the growth of helium bubbles in the walls of nuclear fusion reactors, imposing fast growth rates leads to drastically different predictions than when using EXAALT to extend the simulation to timescales that are closer to realistic conditions. Courtesy: the EXAALT project

Users need such a capability to understand materials for nuclear energy, both nuclear fuels in fission power plants and on the walls of fusion reactors.

“We aim to build a comprehensive capability and demonstrate it on nuclear applications, but, really, it’s a very general framework that anybody else in materials science should be able to use,” Perez said.

One of EXAALT’s main targets is to allow for the development of better materials, because the national need is so great. For example, hundreds of millions of tons of metal are consumed in the United States each year. However, the development process for a new material takes a long time and is error prone.

“We hope that exascale will give us the ability to run simulations directly in the conditions that are relevant to the applications,” Perez said. “This will really help in terms of the design and testing of novel materials, which is important in scientific discovery, but also for industrial research. And since we focus on materials in extreme conditions, our work has impact on the national security side of DOE’s mission as well.”

Providing a Versatile Product

The EXAALT project has produced and released an open source software package that integrates three large pieces of code developed at LANL and Sandia National Laboratories (SNL): ParSplice, an accelerated molecular dynamics module; LAMMPS, a well-known molecular dynamics code; and LATTE, a LANL-produced code.

The integrated code is designed to allow for molecular dynamics simulations with longer timescales (via ParSplice), huge systems of atoms and molecules (via LAMMPS), and high-accuracy semi-empirical quantum capability (via LATTE), to make approximations and obtain some parameters from empirical data. In time, users will be able to dial in the regime they are interested in, set up their system, and then launch EXAALT on a large machine.

“EXAALT has made tremendous progress in the last year,” Perez said. “A focus has been on the development of methods that can simulate intermediate-size systems for long times. This regime is very relevant to many applications in materials science, such as the evolution of the walls of fusion reactors.”

A Solution for Intermediate-Size Systems

Perez explained that simulating intermediate-size systems is difficult. He said the reason is that it requires systems that are too small to fully utilize an exascale machine with traditional molecular dynamics tools, yet too large for conventional accelerated molecular dynamics methods. The waiting times between morphological changes anywhere in the system, he said, become so short that the simulation cannot be further accelerated.

“The EXAALT team has implemented a generalization of the ParSplice method that allows for different sections of the systems to be accelerated separately in short bursts before being synchronized back together,” Perez said. “In this case, the efficiency of ParSplice becomes controlled by the timescale over which morphological changes occur locally in each section and not by the much shorter global timescale. This allows for much better performance.”

To demonstrate the scalability of this approach to the application of accelerated dynamics methods, the team has run at scale using 270,000 cores on the Theta supercomputer at the Argonne Leadership Computing Facility. This simulation also employed a new generation of materials model that the team is developing. In addition, the EXAALT team demonstrated quantum simulations of nuclear fuels at scale—again using 270,000 cores on Theta—by employing a combination of ParSplice, LAMMPS, and LATTE.

Near-Term Plans

A key next step is to ensure that EXAALT can make the most of the latest computer architectures that rely heavily on accelerators, such as GPUs, to deliver very high simulation rates. This requires the careful redesign and optimization of key components of EXAALT. This essential effort is currently ongoing in collaboration with different projects within ECP and with the National Energy Research Scientific Computing Center.


Souce: Exascale Computing Project

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RIKEN Post-K Supercomputer Named After Japan’s Tallest Peak

May 23, 2019

May 23 -- RIKEN President Hiroshi Matsumoto announced that the successor to the K computer will be named Fugaku, another name for Mount Fuji, which is the tallest mountain peak in Japan. Supercomputer Fugaku, developed b Read more…

By Tiffany Trader

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or rent a phishing kit and start attacking – or it can be done Read more…

By Doug Black

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Who’s Driving Your Car?

Delivering a fully autonomous driving (AD) vehicle remains a key priority for both manufacturers and technology firms (“firms”). However, passenger safety is now a top-of-mind concern due in great part, to fatalities resulting from driving tests over the past years. Read more…

TACC’s Upgraded Ranch Data Storage System Debuts New Features, Exabyte Potential

May 22, 2019

There's a joke attributed to comedian Steven Wright that goes, "You can't have everything. Where would you put it?" Users of advanced computing can likely relate to this. The exponential growth of data poses a steep challenge to efforts for its reliable storage. For over 12 years, the Ranch system at the Texas Advanced Computing Center... Read more…

By Jorge Salazar, TACC

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or re Read more…

By Doug Black

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This