Exascale Computing Project Highlights Its ‘EXAALT’ Molecular Dynamics Effort

March 15, 2019

March 15, 2019 — Researchers can run computer simulations of the physical movements of atoms and molecules and make inferences about the dynamic evolution of the system. This method of simulation, called molecular dynamics, is used at many computing centers across the country in areas such as materials science and biology. These simulations can yield extremely detailed understanding of the mechanisms by which materials evolve in time and in response to external stimuli. However, exascale computing will require a comprehensive molecular dynamics capability with greater versatility.

The coming exascale computing systems will create the necessity for new molecular dynamics codes to take advantage of the leap in power and performance. In fact, if today’s molecular dynamics codes were run on an exascale machine, larger numbers of atoms and molecules could be simulated, but longer times could not.

The reason for the limitation is that conventional algorithms exploit large computers by decomposing space into small cells and putting individual processors in charge of each one. This approach works well if cells are large, but if they become too small because atoms are spread thin across compute resources in an effort to further increase the simulation speed, the overhead of synchronizing the work over different cells begins to dominate, and performance plummets. This impediment has, for many years, confined improvement in simulation times.

Overcoming the Limitations

A US Department of Energy (DOE) Exascale Computing Project (ECP) effort called EXAALT (Exascale Atomistic Capability for Accuracy, Length, and Time) is endeavoring to push past the current limitations and allow for simulations with not only longer length scales but also longer time scales and higher accuracy.

Computationally, EXAALT’s goal is to develop a comprehensive molecular dynamics capability for exascale.

“The user should be able to say, ‘I’m interested in this kind of system size, timescale, and accuracy,’ and directly access the regime without being constrained by the usual scaling paths of current codes,” said Danny Perez of Los Alamos National Laboratory (LANL) and the EXAALT team.

When simulating the evolution of materials, accessing very long times can be crucial. For example, in the case of the growth of helium bubbles in the walls of nuclear fusion reactors, imposing fast growth rates leads to drastically different predictions than when using EXAALT to extend the simulation to timescales that are closer to realistic conditions. Courtesy: the EXAALT project

Users need such a capability to understand materials for nuclear energy, both nuclear fuels in fission power plants and on the walls of fusion reactors.

“We aim to build a comprehensive capability and demonstrate it on nuclear applications, but, really, it’s a very general framework that anybody else in materials science should be able to use,” Perez said.

One of EXAALT’s main targets is to allow for the development of better materials, because the national need is so great. For example, hundreds of millions of tons of metal are consumed in the United States each year. However, the development process for a new material takes a long time and is error prone.

“We hope that exascale will give us the ability to run simulations directly in the conditions that are relevant to the applications,” Perez said. “This will really help in terms of the design and testing of novel materials, which is important in scientific discovery, but also for industrial research. And since we focus on materials in extreme conditions, our work has impact on the national security side of DOE’s mission as well.”

Providing a Versatile Product

The EXAALT project has produced and released an open source software package that integrates three large pieces of code developed at LANL and Sandia National Laboratories (SNL): ParSplice, an accelerated molecular dynamics module; LAMMPS, a well-known molecular dynamics code; and LATTE, a LANL-produced code.

The integrated code is designed to allow for molecular dynamics simulations with longer timescales (via ParSplice), huge systems of atoms and molecules (via LAMMPS), and high-accuracy semi-empirical quantum capability (via LATTE), to make approximations and obtain some parameters from empirical data. In time, users will be able to dial in the regime they are interested in, set up their system, and then launch EXAALT on a large machine.

“EXAALT has made tremendous progress in the last year,” Perez said. “A focus has been on the development of methods that can simulate intermediate-size systems for long times. This regime is very relevant to many applications in materials science, such as the evolution of the walls of fusion reactors.”

A Solution for Intermediate-Size Systems

Perez explained that simulating intermediate-size systems is difficult. He said the reason is that it requires systems that are too small to fully utilize an exascale machine with traditional molecular dynamics tools, yet too large for conventional accelerated molecular dynamics methods. The waiting times between morphological changes anywhere in the system, he said, become so short that the simulation cannot be further accelerated.

“The EXAALT team has implemented a generalization of the ParSplice method that allows for different sections of the systems to be accelerated separately in short bursts before being synchronized back together,” Perez said. “In this case, the efficiency of ParSplice becomes controlled by the timescale over which morphological changes occur locally in each section and not by the much shorter global timescale. This allows for much better performance.”

To demonstrate the scalability of this approach to the application of accelerated dynamics methods, the team has run at scale using 270,000 cores on the Theta supercomputer at the Argonne Leadership Computing Facility. This simulation also employed a new generation of materials model that the team is developing. In addition, the EXAALT team demonstrated quantum simulations of nuclear fuels at scale—again using 270,000 cores on Theta—by employing a combination of ParSplice, LAMMPS, and LATTE.

Near-Term Plans

A key next step is to ensure that EXAALT can make the most of the latest computer architectures that rely heavily on accelerators, such as GPUs, to deliver very high simulation rates. This requires the careful redesign and optimization of key components of EXAALT. This essential effort is currently ongoing in collaboration with different projects within ECP and with the National Energy Research Scientific Computing Center.


Souce: Exascale Computing Project

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire