Exawind Project Demonstrates Blade-Resolved Simulation of NREL 5 MW Reference Wind Turbine

October 25, 2018

Oct. 25, 2018 — In 2017 wind generated 6.3% of the United States’s electricity, according to the US Energy Information Administration. If the nation can use its abundant wind resources to generate 30% of its electric power, the societal and economic impact will be profound. US energy security will be reinforced by the greater diversity in the energy supply. Cost-competitive electricity could be provided to key regions of the country, greenhouse-gas emissions reduced, and the quantity of water required for thermo-electric power generation lessened.

Geometry-resolved large-eddy simulation of the NREL 5 MW reference wind turbine, which shows velocity isosurfaces at 5.5 m/s after three rotor revolutions. The simulation was performed on the NERSC Cori system with Nalu-Wind, an open-source unstructured grid, low-Mach-number computational fluid dynamics code.

A key challenge for wide-scale deployment of wind power without subsidy is plant-level inefficiencies. Plant-level performance losses can be as high as 20–30% due to complex terrain, unique atmospheric flow phenomena, and the complex flow interactions that occur in large wind farms, which comprise multiple arrays with significant turbine-turbine wake interactions. Addressing the challenge in reducing plant-level losses requires more knowledge of their dynamics to inform optimization of existing plants (through, for example, new control strategies), optimized layout of new plants, and the creation of new wind turbine technology.

The U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), a joint collaboration of two DOE sponsoring organizations, the Office of Science (DOE-SC) and the National Nuclear Security Administration (NNSA), has funded a research effort named ExaWind under its Application Development focus area.

ECP’s ExaWind project aims to advance the fundamental comprehension of whole wind plant performance by examining wake formation, the impacts of complex terrain, and the effects of turbine-turbine wake interactions. When validated by targeted experiments, the predictive physics-based high-fidelity computational models at the center of the ExaWind project, and the new knowledge derived from their solutions, provide an effective path to optimizing wind plants.

Large-eddy simulation (LES) is a well-known mathematical computational fluid dynamics (CFD) approach to capturing the turbulent flow structures in engineering applications. The ExaWind team recently performed a LES of multiple revolutions of the National Renewable Energy Laboratory (NREL) 5 MW reference turbine with the open-source CFD code called Nalu-Wind. The NREL 5 MW reference turbine is a notional turbine fully defined in the open domain that has the key features of large modern wind turbines.

A body-fitted mesh—or computational geometric representation—of the blades, nacelle (the wind turbine’s encased generating components), and tower geometry were created. The modeling applied in this effort will be used to better understand weak and strong scaling performance of the ExaWind incompressible-flow-solver software stack and to advance the movement toward next-generation computing architectures. The software stack consists of software libraries for setting up and solving the system of equations, whose solution constitutes a numerical approximation of the physical-system continuum solution. This recent success of ExaWind establishes a new baseline capability for simulating modern turbines with body-resolved meshes and enables scientists and engineers to begin understanding the complex flow physics in multi-turbine wind farms that will take advantage of future ExaWind modeling and simulation capability.

Research Context and Objectives

Current methods for modeling wind energy cost and performance fall short due to insufficient model fidelity and inadequate treatment of fundamental phenomena such as atmospheric inflow structure, turbine wake development, and subsequent turbine-turbine wake flow interactions, which are persistently significant factors, especially in complex terrain. Most design and analysis tools simplify the flow physics with empirical representations that fail to capture first principles and/or are not computationally possible with existing simulation capabilities. Among the common deficiencies of the current methods are an inability to accurately model wake structure, a lack of understanding of the impact of different atmospheric turbulent conditions, and inadequate numerical schemes for transition from mesoscale (numerical weather prediction) to LES in CFD for flow within wind farms.

The impediment to predicting and minimizing energy losses and creating new technology options that will maximize performance has compelled ExaWind researchers to develop a predictive simulation capability that the team will use to simulate a wind plant composed of more than 100 multi-megawatt-scale wind turbines located within 100 square kilometers of complex terrain. These simulations require hundreds of billions of grid points to adequately resolve the flow physics and dynamic interactions.

The primary modeling and simulation environment of ExaWind is Nalu-Wind, which is based on the Nalu code developed at Sandia National Laboratories (SNL). Nalu-Wind is an unstructured-grid code that solves the acoustically incompressible Navier-Stokes equations; these equations are well suited for solving the low-Mach-number aerodynamics around the complex moving geometry of wind turbines and wind farms. Nalu-Wind is built on the Trilinos Sierra Toolkit (STK) library and can employ either the Hypre or Trilinos linear-system solver stacks. The ultimate objective of the ExaWind project is to create a predictive wind simulation capability that will run on an exascale-class computer by 2022.

To read more about this simulation, visit the full article here.


Source: Exascale Computing Project

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This