Experts Gather at Fermilab for International Workshop on Cryogenic Electronics for Quantum Systems

September 25, 2019

September 25, 2019 — It’s a cold truth about quantum computing: To operate, the leading types of processing units that could lie at the heart of quantum computers must be maintained below a chilling 15 millikelvins, or minus 459 degrees Fahrenheit, close to absolute zero. And to be useful, the electronics that process and read the data have to be nearly as cold.

Leaders in quantum science converged this summer at Fermilab for the world’s first workshop on cryogenic electronics for quantum systems. As these fields are highly competitive, the hosts worked hard to attract key global allies and leaders in the field.

Scientists and engineers from academia and industry discussed the challenges of designing electronics for processors and sensors that will work in the ultracold environment.

It’s a fundamental problem facing the field of quantum computing, which holds immense possibility across multiple disciplines. Experts say that quantum computers could someday be powerful enough to solve problems that are impossible for classical computers, potentially redefining how we see the world.

And much of it rides on designing electronics that are up to the task.

“Quantum systems won’t exist without cryogenic electronics,” said Fermilab engineer Farah Fahim, workshop co-organizer and deputy head of quantum science at Fermilab. “That’s why our community needs to collaborate, and why we’re working to establish key partnerships with academia and industry, as well as manufacturing companies that would support the fabrication of cold chips.”

Researchers across multiple sectors have called for collaboration, and pioneers in the field turned out for the meeting. They included Edoardo Charbon (also workshop co-organizer) of the Advanced Quantum Architecture Lab at the Swiss Federal Institute of Technology Lausanne, or EPFL, in Switzerland and Andrew Dzurak of the University of New South Wales and Australia, a trailblazer in the field of silicon-based qubits who gave the workshop’s keynote address. Representatives from IBM, Intel, Global Foundries, Google and Microsoft also attended.

“The Fermilab cryoelectronics workshop is a very important first step for the quantum computing community,” said Malcolm Carroll, research staff member at IBM Research. “Developing supporting electronics for future quantum computers is one of the next big hurdles. IBM looks forward to this series continuing and contributing to it as it has for this first one.”

The global cooling effort centers on accommodating the qubit — the fundamental unit of a quantum computer’s processor. Qubit information needs the extreme cold to survive — below 15 millikelvins — since any thermal energy can disturb the quantum computing operation.

“The core of any quantum-technology-based system is a very special and carefully designed electronics optimized for deep cryogenic temperatures. This is a brave new world for us electronics engineers.”

Current state-of-the-art systems use tens of qubits. But a quantum computer that surpasses the capabilities of today’s classical computer would in certain cases require millions or billions of qubits, each of which needs electronics, both to control the state of the qubit and to read out its signals.

And electronics means cables.

“As the system scales up, one bottleneck has been getting information out of the qubits and controlling the qubits themselves,” Fahim said. “It requires large numbers of wires.”

For larger systems, the qubits and the electronics need to be closely integrated. Otherwise, information can become degraded as it winds its way down lengthy wires to bulky systems. With tight integration, the electronics can deliver the fast, self-correcting feedback required to control the qubit state — on the order of ten-billionths of a second.

When you have the number of wires and cables required for a million- or billion-qubit system, close integration isn’t possible unless your electronics can operate in the cold, side-by-side with the qubit.

Fermilab engineer Farah Fahim, left, and Edoardo Charbon of the Advanced Quantum Architecture Lab at EPFL co-organized the world’s first workshop on cryogenic electronics for quantum systems. Photo: Davide Braga

“When you have lots of cables, after some point, you can’t expand in that direction anymore. You can’t integrate a million cold qubits with warm electronics,” Fahim said. “To scale up, cryogenic electronics is the only way to go. To be able to take it to the next level of integration, we need to move the room temperature control to cryogenic control. You want to be able to change the technology to meet the requirements.”

When the electronics live in the same space — the same refrigerated space — as the qubits, the system becomes practical and manageable, capable of providing accurate, real-time qubit control.

That is the challenge the workshop attendees took head-on: developing quantum-system electronics that don’t mind being left in the cold.

“Developments in cold electronics may hold the keys to scaling up quantum computing,” said Microsoft Quantum – Sydney Director David Reilly, also a professor at the University of Sydney. “As the community moves from the demonstration of single-qubit prototypes to scaled up machines that can address real problems, interest in this field is really taking off. Fermilab has deep expertise in cold electronics as well as a culture of filling the gap between academia and industry. It’s only fitting that the first workshop on this topic was at Fermilab — and I expect to see many more as government labs become pivotal players in the quantum ecosystem.”

Experts dream of a day when quantum computers can get out of the cold and sit comfortably atop your desk just like your current PC.

“We would like to reach a stage where nothing is cryocooled, but until we get there, the only way we get there is with electronics operating at very low temperatures,” Fahim said.

The workshop was a major, international step in that direction.

“Quantum technologies are the next frontier for many fields, including electronics. While quantum computers are certainly the pinnacle of such worldwide effort, many other applications are emerging, like quantum imaging, quantum sensing, quantum communications, quantum metrology, to name just a few,” Charbon said. “But the core of any quantum-technology-based system is a very special and carefully designed electronics optimized for deep cryogenic temperatures. This is a brave new world for us electronics engineers.”

To continue the dialogue on this key enabling technology, the second International Workshop on Cryogenic Electronics for Quantum Systems will be held in Neuchatel, Switzerland in 2020.

This work is supported by the DOE Office of Science.

Learn more about quantum science efforts at Fermilab.

About Fermilab

Fermilab is a member of the IBM Q Hub at the Oak Ridge National Laboratory and part of joint research with the IBM Q Network in the context of the Chicago Quantum Exchange


Source: Leah Hesla, Fermilab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire