Quantum Computer Prototype on Superconductive Materials Launched in Russia

October 14, 2019

MOSCOWOct. 14, 2019 — Scientists from NUST MISIS launched Russia’s first prototype of a quantum computer. The device working on two qubits performed a specific quantum algorithm, exceeding the previously known accuracy limit by 3%. Superconducting materials were taken as the basis for qubits.

Work on the creation of a quantum computer within the framework of Russian Foundation for Advanced Research Projects has been carried out at the NISU MISIS since 2016 under the supervision of Valery Ryazanov, the chief researcher of the University’s Laboratory for Superconducting Metamaterials. The design involves the use of superconducting materials as the basis for qubits.

Qubits (quantum bits) are the “heart” of a quantum computer, an analogue of the bits of a regular PC, but far more advanced. If PC “thinks” and counts in zeros and ones, that is, each bit of information can be encoded either as “0” or as “1”, then the qubit has the property of the so-called superposition, the ability to be in both states simultaneously. This opens up great prospects, because with such computing resources a quantum computer will be able to considerably overtake the most powerful computing devices.

A quantum computer based on superconducting materials is a more advanced system than its counterparts. For example, other scientific teams are developing qubits on individual atoms (which can be “lost” due to a negligible size) and on ions (they can be ordered only linearly, which is physically inconvenient). The qubits created at NUST MISIS are made of aluminum, have a size of 300 microns. They cannot be “lost”, and it is possible to order them non-linearly.

During the experiment, a two-qubit quantum computer solved Grover’s quantum algorithm. Ideally, a quantum computer, thanks to the superposition, can find the correct value x in solving this problem in one call to the function f (x) with a probability of 100%.

“Grover’s two-qubit algorithm is a very important step towards creating a quantum computer. We are not the first in the world to demonstrate its solution, but here we are talking primarily about technological achievement. We have shown the possibility of implementing all the necessary logical operations for a universal quantum processor: initialization, single-qubit and two-qubit operations, and reading, and with an innacuracy level satisfactory for small algorithms,” said Ilya Besedin, an engineer at the Laboratory for Superconducting Metamaterials, one of the project participants.

The biggest difficulty in creating a useful quantum processor is errors. Unlike regular computers, which can work for years and always produce reproducible and predictable results, quantum computers are affected by noise, which distorts the calculation results. Despite the fact that the two-qubit processor created at NUST MISIS is too small to solve applied problems, it successfully “overcame” the threshold of 50% probability of a correct answer, reaching 53%.

The whole algorithm consists of initializing two qubits, four one-qubit operations, two two-qubit operations, and reading two qubits; errors in any of them reduces the probability of a correct answer.

A chip for a quantum computer was manufactured at Bauman Moscow State Technical University. The design of the algorithm and the launch of the device was done at NUST MISIS, where a unique set of equipment with cryostats was built in the Laboratory for Superconducting Metamaterials, allowing operation at extremely low temperatures to -273.14 degrees Celsius, which is close to absolute zero.

“Nevertheless, we still have a long way to go,” adds Ilya Besedin. More recently, an article by Google, which was not yet officially published, appeared in press, stating that Google managed to implement the “quantum superiority” algorithm on a 53-qubit superconducting quantum processor. The task of “quantum superiority” is the most favorable task for a quantum computer, which is very difficult to accomplish on a classical computer. And if our overcoming of the “classic” limit is still a fundamental result, the Google result is already closer to the practical side: they were able to formulate and solve a task that their processor can complete in minutes, and a powerful supercomputer has been tested for weeks.”

And even so, Google has not yet managed to make quantum computer solving some practically useful task more effectively than a classical one. However, now theoretical predictions regarding the computational superiority of quantum computers are confirmed by experiments.

The next important steps towards creating a useful quantum computer are a demonstration of reduced to several tens of qubits versions of “useful” quantum algorithms (for example, a simulator of a chemical reaction or the ground state of a molecule) and a demonstration of quantum error correction. Exactly for error correction, by the way, superconducting qubits are best suited: they can be organized into a two-dimensional lattice with local interactions and parallel gates, which is necessary for the “surface code”, the simplest in terms of requirements and accuracy of operations.

“We also want to move in this direction, but from my point of view in quantum computing we should do not only “more”, but also “better “: the superconducting qubits that we use now turn out to be quite expensive and give a lot of mistakes. And before doing hundreds and thousands of qubits, in my opinion, it’s worth working on the most basic unit, a qubit”, summarizes Ilya Besedin.


Source: The National University of Science and Technology MISiS

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire