Flatiron Institute to Repurpose SDSC’s Gordon Supercomputer

March 16, 2017

SAN DIEGO, Calif., March 16, 2017 — The San Diego Supercomputer Center (SDSC) at the University of California San Diego and the  Simons Foundation’s Flatiron Institute in New York have reached an agreement under which the majority of SDSC’s data-intensive Gordon supercomputer will be used by Simons for ongoing research following completion of the system’s tenure as a National Science Foundation (NSF) resource on March 31.

Under the agreement, SDSC will provide high-performance computing (HPC) resources and services on Gordon for the Flatiron Institute to conduct computationally-based research in astrophysics, biology, condensed matter physics, materials science, and other domains. The two-year agreement, with an option to renew for a third year, takes effect April 1, 2017.

Under the agreement, the Flatiron Institute will have annual access to at least 90 percent of Gordon’s system capacity. SDSC will retain the rest for use by other organizations including UC San Diego’s Center for Astrophysics & Space Sciences (CASS), as well as SDSC’s OpenTopography project and various projects within the Center for Applied Internet Data Analysis (CAIDA), which is based at SDSC.

“We are delighted that the Simons Foundation has given Gordon a new lease on life after five years of service as a highly sought after XSEDE resource,” said SDSC Director Michael Norman, who also served as the principal investigator for Gordon. “We welcome the Foundation as a new partner and consider this to be a solid testimony regarding Gordon’s data-intensive capabilities and its myriad contributions to advancing scientific discovery.”

“We are excited to have a big boost to the processing capacity for our researchers and to work with the strong team from San Diego,” said Ian Fisk, co-director of the Scientific Computing Core (SCC), which is part of the Flatiron Institute.

David Spergel, director of the Flatiron Institute’s Center for Computational Astrophysics (CCA) said, “CCA researchers will use Gordon both for simulating the evolution and growth of galaxies, as well as for the analysis of large astronomical data sets.  Gordon offers us a powerful platform for attacking these challenging computational problems.”

Simons Array and Simons Observatory

The POLARBEAR project and successor project called The Simons Array, led by UC Berkeley and funded first by the Simons Foundation and then in 2015 by the NSF under a five-year, $5 million grant, will continue to use Gordon as a key resource.

“POLARBEAR and The Simons Array, which will deploy the most powerful CMB (Cosmic Microwave Background) radiation telescope and detector system ever made, are two NSF supported astronomical telescopes that observe CMB, in essence the leftover ‘heat’ from the Big Bang in the form of microwave radiation,” said Brian Keating, a professor of physics at UC San Diego’s Center for Astrophysics & Space Sciences and a co-PI for the POLARBEAR/Simons Array project.

“The POLARBEAR experiment alone collects nearly one gigabyte of data every day that must be analyzed in real time,” added Keating. “This is an intensive process that requires dozens of sophisticated tests to assure the quality of the data. Only by leveraging resources such as Gordon are we be able to continue our legacy of success.”

Gordon also will be used in conjunction with the Simons Observatory, a 5-year $40 million project awarded by the Foundation in May 2016 to a consortium of universities led by UC San Diego, UC Berkeley, Princeton University, and the University of Pennsylvania. In the Simons Observatory, new telescopes will join the existing POLARBEAR/Simons Array and Atacama Cosmology Telescopes to produce an order of magnitude more data than the current POLARBEAR experiment. An all-hands meeting for the new project will take place at SDSC this summer. A video describing the project can be viewed by clicking the image below.

Delivering the Data

The result of a five-year, $20 million NSF grant awarded in late 2009, Gordon entered production in early 2012 as one of the 50 fastest supercom­puters in the world, and the first one to use massive amounts of flash-based memory. That made it many times faster than conventional HPC systems, while having enough bandwidth to help researchers sift through tremendous amounts of data. Gordon also has been a key resource within NSF’s XSEDE (Extreme Science and Engineering Discovery Environment) project. The system will officially end its NSF duties on March 31 following two extensions from the agency.

By the end of February 2017, Gordon had supported research and education by more than 2,000 command-line users and over 7,000 gateway users, primarily through resource allocations from XSEDE.  One of Gordon’s most data-intensive tasks was to rapidly process raw data from almost one billion particle collisions as part of a project to help define the future research agenda for the Large Hadron Collider (LHC). Gordon provided auxiliary computing capacity by processing massive data sets generated by one of the LHC’s two large general-purpose particle detectors used to find the elusive Higgs particle. The around-the-clock data processing run on Gordon was completed in about four weeks’ time, making the data available for analysis several months ahead of schedule.

About the Simons Foundation

The Simons Foundation’s mission is to advance the frontiers of research in mathematics and the basic sciences, supporting discovery-driven scientific research. Co-founded in New York City by Jim and Marilyn Simons, the foundation celebrated its 20th anniversary in 2014. The Foundation makes grants in four program areas: mathematics and physical sciences, life sciences, autism research, and education and outreach. In 2016 the Foundation launched an internal research division called the Flatiron Institute, a multidisciplinary institute focused on computational science.

About SDSC

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. SDSC’s petascale Comet supercomputer continues to be a key resource within the National Science Foundation’s XSEDE (Extreme Science and Engineering Discovery Environment) program.


Source: SDSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire