Fraunhofer Goes Quantum: IBM’s Quantum System One Comes to Europe

June 15, 2021

June 15, 2021 — In a blog post, Katia Moskvitch, IBM Research Editorial Lead, discussed IBM’s first quantum system outside of the US. The blog post is included in full below.


Europe’s largest application-oriented research organization Fraunhofer-Gesellschaft received a special multi-package delivery from overseas a few months ago. Inside was an IBM Quantum System One—which until now had only existed in IBM’s New York-based data center.

Fraunhofer-Gesellschaft is betting that Quantum System One will pave the way to future industrial applications of this new way of computation. It should also lead to ever more research and help develop a global quantum-ready workforce. It’s the first step towards commercially scaling IBM’s quantum computing technology. In July, a quantum computer in Japan will join its Fraunhofer cousin, and in the not too distant future one will also be installed at Cleveland Clinic in Ohio.

“Quantum computing opens up new possibilities for industry and society,” says Hannah Venzl, the coordinator of Fraunhofer Competence Network Quantum Computing. “Drugs and vaccines could be developed more quickly, climate models improved, logistics and transport systems optimized, or new materials better simulated. To make it all happen, to actively shape the rapid development in quantum computing, we need to build up expertise in Europe.”

Indeed in Europe, and the world, too.

Building up expertise is vital to create a quantum industry. We expect that within the decade, we will achieve a “quantum advantage”—the point when quantum computers will provide more-accurate, computationally cheaper solutions; or even allow us to calculate solutions to problems we can’t solve today. When that happens, these machines are likely to change the world. But the world needs to be ready for them—with a skilled, creative, results-driven talent.

That’s our quantum future—and with these machines now starting to pop up across the globe, it may be closer than you think.

Tackling the quantum talent shortage

Fraunhofer’s new addition is mirror-black and shiny. Behind the system’s giant doors, made of the same glass protecting the Mona Lisa in the Louvre, there is a cylinder-like structure. Inside is the 27-qubit Falcon processor, IBM’s most-advanced, hard-tech quantum processor. It’s kept at a temperature colder than outer space, with qubits that have long coherence times—how long they remain in their quantum state—and precise, low-noise operations of about 1020 watts.

While Fraunhofer is the first place outside the US to have an IBM Quantum System One, the interest in quantum technologies has been steadily growing over the past decade. Nearly all continents now have quantum computing startups, and many tech giants in addition to IBM are making strides in the field. In total, the global market for quantum technologies could soon reach nearly $22 billion.

But here is the thing. While investments in research and the research itself are important, they are not enough. There is a disconnect between the development of a quantum computer and its wide-scale commercialization.

Only a fraction of businesses are getting quantum-ready. The vast majority of companies still do not have the workforce able to use quantum computers, to do any kind of quantum programming, or even have an idea how a quantum computer could help them. There is little on-the-job quantum training and few hires with quantum computing skills.

That’s why partnerships like the one between IBM and Fraunhofer are crucial—even though it’s not necessary to buy a quantum computer to access one. Currently 150 organizations in IBM’s Quantum Network including research labs, start-ups, universities and enterprises access IBM’s quantum fleet via the cloud. Still, being able to have the machine on premises helps with processing more data, locally.

Fraunhofer’s System One, which came online a few weeks ago for testing, is already hard at work. Focusing on quantum optimization, researchers here in Germany have started exploring new simulation approaches for materials in energy storage systems. Another project being actively studied by the local researchers is to better-optimize financial asset portfolios and improve the stability parameters in energy supply infrastructures. They even aim to use the quantum computer to push the limits of deep learning with quantum machine learning.

“At Fraunhofer, we have more than 70 years of expertise in applied research and industrial projects, and we are closely interlinked with industry,” says Venzl. “The training on the system will help us develop practical applications and build up important competencies in German industry and at Fraunhofer itself.”

The ball at Fraunhofer is definitely rolling—but getting the machine here was anything but trivial.

Building a quantum computer… remotely

The COVID-19 pandemic intervened in the assembly, and it had to be done remotely.

“I was on site in October 2019 where I had the chance to interact directly with the team doing local design work, get everyone involved—electricians, to plumbers—and walk through the plans in detail,” says Chris Lirakis, IBM quantum lead for quantum systems deployment, who is based at IBM’s Yorktown Heights lab near New York City. “It’s the only way that you can read people’s body language, take cultural and language differences into account.”

Lirakis’s plans, though, got derailed.

The pandemic meant it wasn’t possible for anyone from the US team to fly to Germany. So the IBMers had to resolve to NASA-inspired techniques of remote assembly, taking the remote working practices of this pandemic to the extreme.

One of the crates shipped was custom-built to withstand vibration isolation, with shock absorbing material and brackets that could be bolted down, making the entire crate impossible to tip over.

The IBM team in Germany that created the ‘hub’ of the Quantum System One in Ehningen, a town half an hour drive from Stuttgart, initially had no experience in assembling the full system. So Lirakis and his colleagues set up an in-depth course in quantum assembly for the German engineers. This way, several hours a day for a few weeks, they were locked in a virtual classroom. The US team had to be on a video conference call with the Germans at 2:00 a.m., at the start of the day in Stuttgart.

On a lighter note, on Fridays the two teams happily cracked open beers at the end of day—lunchtime on the US east coast. Still, they pulled it off, and the quantum computer came online according to the original, pre-COVID schedule in January 2021.

Getting quantum-ready—early

While the quantum system is for Fraunhofer, it’s possible for scientists and students outside the institute to use it too, for civil research and education. Access requires a contract, and the use is on the basis of a monthly ticket, giving partners flexibility without a long-term commitment.

Every new researcher that gets their hands on the machine, in the lab or through the cloud, will contribute to turning the trickle of quantum talent into a flood, vital for the emerging quantum era. We need more collaborations like these, between researchers and students, to create a diverse quantum-ready workforce, with careers in quantum technologies of the future.

The key word here is “diverse.”

Scientists and students using quantum computers shouldn’t just be physicists or programmers, which is often the case today. A successful quantum ecosystem of tomorrow needs quantum computing engineers, computer scientists, technicians, experts in optics and photonics, and even economists, market leaders and communicators.

We need skilled quantum programmers to create libraries of quantum algorithms for specific problems in different fields. But we also need quantum experts to further improve software and hardware, to advance core quantum computing technology. And we need businesses to have enough quantum awareness to realize that a quantum computer would help them significantly improve output and possibly create products they can’t create today.

As the technology and the ecosystem mature, thousands of new jobs will appear. We need to address today’s quantum talent shortage, ensuring there is enough skilled, clever people to fill them. We have to get the world ready before the technology is ready, to reap the most rewards.

More collaborations like the one with Fraunhofer will help to democratize the quantum industry, and build a vibrant quantum computing ecosystem to make the world quantum-ready—and start shaping our quantum future.

Click here for more info.


Source: Katia Moskvitch, IBM

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Faster Optical Switch that Operates at ‘Room Temp’ Developed by IBM, Skolkovo Researchers

October 19, 2021

Optical switching technology holds great promise for many applications but hot operating temperatures have been a key obstacle slowing progress. Now, a new optical switching device that can operate at room temperatures a Read more…

Energy Exascale Earth System Model Version 2 Promises Twice the Speed

October 18, 2021

The Energy Exascale Earth System Model (E3SM) is an ongoing Department of Energy (DOE) earth system modeling, simulation and prediction project aiming to “assert and maintain an international scientific leadership posi Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire