Fraunhofer IPMS Contributes to German Quantum Computer Initiative

September 3, 2024

Sept. 3, 2024 — Together with 24 German research institutions and companies under the coordination of Forschungszentrum (FZ) Jülich, Fraunhofer IPMS is working on an integrated German quantum computer based on superconducting quantum chips and with improved error rates. Halfway through the project, the first demonstrator can now be put into operation. The CNT at Fraunhofer IPMS is contributing its expertise of state-of-the-art, industry-compatible CMOS semiconductor manufacturing.

Cryogenic setup and control of a superconducting quantum computer at FZ Jülich.

Quantum computers are seen as the central solution for the increasing demand for more and more computing power and larger amounts of data. However, in order to make quantum processors applicable and scalable, there are still various hurdles that need to be overcome. The error-proneness of  qubits is currently considered one of the biggest challenges in quantum computer development. The aim of this partnership is to develop a system with various quantum processors based on next-generation superconducting circuits and that has a very low error rate. This means that the qubits achieve a higher quality. The approach is world-leading and is likewise being pursued by Google, IBM and Intel.

As an overall milestone, a first prototype of the QSolid half-time demonstrator with 10 qubits, an integrated software stack and cloud user access will soon go into operation at Forschungszentrum (research center) Jülich, making it possible to test applications and benchmarks for industry standards. The project is supported by the German Federal Ministry of Education and Research (BMBF) with a total of € 76.3 million.

Achievements from Semiconductor Manufacturing Used for Quantum Processors

Fraunhofer IPMS is part of the work package “Technology for Hardware Integration.” Together with GlobalFoundries and Fraunhofer IZM-ASSID, it is working on the co-integration of a CMOS control logic together with the quantum processing unit (QPU) in order to reduce complex cabling and lines in the quantum computer. These complex structures could reduce the conductivity of the processor and thus make it more difficult to keep the temperature of the whole system low – especially if the number of qubits increases in future processors.

To this end, an interposer technology is being developed that focuses on high-density, superconducting connections and thermal decoupling through advanced packaging. The challenge is to keep the CMOS chips usable under cryogenic conditions as the temperature of the processors needs to remain low for the qubits.

The Center Nanelectronic Technologies (CNT) utilizes its expertise and infrastructure in state-of-the-art, industry-compatible CMOS semiconductor production in the 300 mm wafer standard. This concerns, for example, manufacturing processes such as deposition and nanostructuring at wafer scale or cryo-electric characterization. “Together with our partners in Dresden, we were able to define the design for the joint CMOS and quantum chip integration as well as suitable materials regarding the temperature management.

Based on this, a first generation interposer was manufactured and successfully tested under cryogenic conditions. This also included the demonstration of superconducting properties of the materials used, such as the indium-based bumps. In addition, the tests for the cryogenic characterization of the CMOS chips by GlobalFoundries were successful,” announces Marcus Wislicenus, head of Quantum Technologies at Fraunhofer IPMS.

A Shared Quantum Computing Infrastructure at FZ Jülich

The 10-qubit prototype is only an intermediate step towards higher scaling. By the end of the project in December 2026, the system is to be further developed so that it can control 30 qubits at best and with the greatest possible error correction.

“Over the last two and a half years, we have built up excellent capacities and launched a system with promising performance values. While we are still integrating and controlling the final subsystems, we are already working on increasing the performance of the prototype, which is intended to handle complex computing operations for applications in industry and science,” said project coordinator Professor Frank Wilhelm-Mauch.

In order to achieve the ambitious goal of an independent quantum computer manufactured in Germany, QSolid brings together 25 research institutions companies and start-ups from all over Germany. Together, the project partners want to pave the way for commercialization and develop a demonstrator that will be available to external users via the “Jülich UNified Infrastructure for Quantum computing” (JUNIQ) and tailored to their individual needs.

About Fraunhofer IPMS

The Fraunhofer Institute for Photonic Microsystems IPMS is a leader in applied research and development in the fields of intelligent industrial solutions, medical technology and mobility. Fraunhofer IPMS works on electronic, mechanical and optical components and their integration into miniaturized devices and systems. Its services range from design and product development to pilot production in its own laboratories and clean rooms. With the Center Nanoelectronic Technologies (CNT), Fraunhofer IPMS offers applied research on 300 mm wafers for microchip producers, suppliers, device manufacturers and R&D partners.


Source: Fraunhofer IPMS

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Argonne’s HPC/AI User Forum Wrap Up

September 11, 2024

As fans of this publication will already know, AI is everywhere. We hear about it in the news, at work, and in our daily lives. It’s such a revolutionary technology that even established events focusing on HPC specific Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be natively integrated into four of the world's most advanced qu Read more…

Computing-Driven Medicine: Sleeping Better with HPC

September 10, 2024

As a senior undergraduate student at Fisk University in Nashville, Tenn., Ifrah Khurram's calculus professor, Dr. Sanjukta Hota, encouraged her to apply for the Sustainable Research Pathways Program (SRP). SRP was create Read more…

LLNL Engineers Harness Machine Learning to Unlock New Possibilities in Lattice Structures

September 9, 2024

Lattice structures, characterized by their complex patterns and hierarchical designs, offer immense potential across various industries, including automotive, aerospace, and biomedical engineering. With their outstand Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, integrated, and secured data. Now scientists working at univer Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently posted the following on X/Twitter: "This weekend, the @xA Read more…

Shutterstock 793611091

Argonne’s HPC/AI User Forum Wrap Up

September 11, 2024

As fans of this publication will already know, AI is everywhere. We hear about it in the news, at work, and in our daily lives. It’s such a revolutionary tech Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be n Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, in Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Shutterstock 1897494979

What’s New with Chapel? Nine Questions for the Development Team

September 4, 2024

HPC news headlines often highlight the latest hardware speeds and feeds. While advances on the hardware front are important, improving the ability to write soft Read more…

Critics Slam Government on Compute Speeds in Regulations

September 3, 2024

Critics are accusing the U.S. and state governments of overreaching by including limits on compute speeds in regulations and laws, which they claim will limit i Read more…

Shutterstock 1622080153

AWS Perfects Cloud Service for Supercomputing Customers

August 29, 2024

Amazon's AWS believes it has finally created a cloud service that will break through with HPC and supercomputing customers. The cloud provider a Read more…

HPC Debrief: James Walker CEO of NANO Nuclear Energy on Powering Datacenters

August 27, 2024

Welcome to The HPC Debrief where we interview industry leaders that are shaping the future of HPC. As the growth of AI continues, finding power for data centers Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Leading Solution Providers

Contributors

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Department of Justice Begins Antitrust Probe into Nvidia

August 9, 2024

After months of skyrocketing stock prices and unhinged optimism, Nvidia has run into a few snags – a  design flaw in one of its new chips and an antitrust pr Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire