Fujitsu Achieves Technical Milestone With 36 Qubit Quantum Simulator

March 30, 2022

TOKYO, March 30, 2022 — Fujitsu announced it has successfully developed the world’s fastest quantum computer simulator capable of handling 36 qubit quantum circuits on a cluster system featuring Fujitsu’s “FUJITSU Supercomputer PRIMEHPC FX 700” (“PRIMEHPC FX 700”)(1), which is equipped with the same A64FX CPU(2) that powers the world’s fastest supercomputer, Fugaku.

Fujitsu PRIMEHPC FX700. Image courtesy of Fujitsu.

The newly developed quantum simulator can execute the quantum simulator software “Qulacs”(3) in parallel at high speed, achieving approximately double the performance of other significant quantum simulators(4) in 36 qubit quantum operations. Fujitsu’s new quantum simulator will serve as an important bridge towards the development of quantum computing applications that are expected to be put to practical use in the years ahead.

Based on this breakthrough, from April 1, 2022, Fujitsu and Fujifilm Corporation(5) (hereinafter Fujifilm) will start joint research on quantum computing applications in the field of materials science.

Moving forward, Fujitsu will accelerate its efforts to develop quantum computers with the aim of developing a 40 qubit simulator by September 2022 and conduct joint research and development of quantum applications with customers in fields including finance and drug discovery.

Vivek Mahajan, Corporate Executive Officer, CTO, Fujitsu Limited, comments: “We stand now at the edge of a new age in computing technology. Fujitsu has successfully developed the world’s fastest quantum simulator by applying its world-leading expertise in computing technologies cultivated over many decades—most recently we put this knowledge to use to work with RIKEN to design the supercomputer Fugaku, which has remained the world’s fastest for the past two years. Moving forward, we aim to leverage this new quantum simulator for our customers to accelerate the development of quantum applications and ultimately contribute to a sustainable world by solving a range of issues facing society.”

New 36 Qubit Quantum Simulator Delivers World’s Fastest Processing Speed

Fujitsu has developed a parallel and distributed quantum simulator for a cluster system consisting of 64 nodes on Fujitsu’s PRIMEHPC FX 700.

The PRIMEHPC FX 700 is equipped with the same A64FX CPU that powers the supercomputer Fugaku and can perform theoretical peak performance of 3.072 teraflops (TFLOPS) in double-precision floating-point format calculations. It further features 32 GB of memory with a high bandwidth of 1,024 gigabytes (GB) per second, and speeds of 12.5 GB per second by connecting nodes via InfiniBand(6).

The new quantum simulator utilizes “Qulacs,” one of the world’s fastest quantum simulator software developed by Osaka University(7) and QunaSys Corporation(8), and the performance of memory bandwidth was maximized by executing multiple calculations simultaneously using SVE (Scalable Vector Extension) instructions(9) when ported to the A64FX.

MPI (Message Passing Interface)(10) enables parallel and distributed execution of Qulacs and realizes a data transfer that maximizes network bandwidth by overlapping calculation and communication. Fujitsu has further developed a new method to efficiently rearrange the qubit states deployed in the distributed memory on the cluster according to the progress of the quantum circuit and its calculation that helps to reduce communication costs. The new system is also compatible with other quantum simulator software besides “Qulacs”.

Qiskit(11), one of the major development tools for quantum computer software, is available for Fujitsu’s quantum simulator and offers quantum software developers a highly convenient development environment. Collaborating with QunaSys(12), Fujitsu plans to provide the company’s quantum chemical calculation software Qamuy(13) on the new quantum simulator to provide the resources to execute a wide variety of high-speed quantum chemical calculations.

Outline of the Joint Research Project With Fujifilm

Additionally, Fujitsu and Fujifilm will start joint research on quantum applications in the computational chemistry field to realize innovative material design methods. The joint research will leverage Fujitsu’s newly developed quantum simulator to study and evaluate algorithms specific to quantum computing in molecular chemical reaction calculations.

  1. Period: April 1, 2022 to March 31, 2023
  2. Purpose: Utilization of quantum computing technology in computational chemistry
  3. Research contents: Examination and evaluation of quantum computing specific algorithms in chemical reactions of molecules, etc.
  4. Roles and responsibilities:
    Fujitsu:
    ・Provision of quantum simulator, analysis of calculation results and examination of improvement methods
    Fujifilm:
    ・Implementation of quantum chemical calculations, analysis of calculation results and examination of improvement methods

Future Plans

Moving forward, Fujitsu will work to improve its technologies including its quantum gate fusion technology which is able to perform calculation for multiple quantum gates simultaneously to realize quantum simulators on a larger scale and at higher speeds. Fujitsu further aims to develop a 40 qubit simulator for application in the fields of finance and drug discovery by September 2022. Fujitsu will apply its accumulated knowledge of quantum applications developed on quantum simulators in the development of quantum computers, with the aim of achieving early solutions to social issues using quantum technology.

Comment from Prof. Keisuke Fujii, Division of Advanced Electronics and Optical Science, Graduate School of Engineering Science, Osaka University:

High-speed simulators using supercomputers are of ever-increasing importance in the development of the quantum software and quantum applications on which the performance of quantum computers depends. Qulacs, an open source software used by developers worldwide, and the technology at the heart of the supercomputer “Fugaku,” have been combined to realize the world’s fastest quantum simulator, which we are confident will greatly accelerate the future development of quantum software.

Comment from Yukihiro Okuno, Senior Researcher, Analysis Technology Center, Fujifilm:

Quantum computers have the potential to perform highly accurate calculations in the computational chemistry field, which cannot be performed by classical computers. Fujifilm will conduct this joint research as a feasibility study to utilize quantum computers in material sciences.

Notes

  • [1]
    PRIMEHPC FX 700 :
    Supercomputer manufactured by Fujitsu that utilizes a high-performance ARM architecture equipped with the CPU A64FX used in the supercomputer “Fugaku”.
  • [2]
    A64FX :
    The world’s first processor to implement the Scalable Vector Extension (SVE), an extension of the Armv8.2-A instruction set architecture for supercomputers. It has 48 operation cores, delivering a theoretical peak performance of maximum 3.3792 TFLOPS for double-precision floating-point calculations. In addition, single precision/half precision floating-point arithmetic and 8 bit/16 bit integer arithmetic can be performed with high throughput by SIMD of 512 bit width, which is highly effective in AI and other processing.
  • [3]
    Qulacs :
    Open source quantum circuit simulator software mainly developed by the Fujii Laboratory, Graduate School of Engineering Science, Osaka University; development of new functions and maintenance by QunaSys.
    Paper )
  • [4]
  • [5]
    Fujifilm Corporation :
    Headquarters: Minato-ku, Tokyo, Japan; President and CEO: Teiichi Goto.
  • [6]
    Infiniband :
    A network mainly used in supercomputers to connect servers. Used to provide a bidirectional serial connection communication system capable of realizing a high-speed band by using a plurality of channels in a bundle.
  • [7]
    Osaka University :
    Location: Suita City, Osaka Prefecture, Japan; President: Shojiro Nishio.
  • [8]
    QunaSys Co., Ltd. :
    Headquarters: Bunkyo-ku, Tokyo, Japan; CEO: Tien Yang.
  • [9]
    SVE (Scalable Vector Extension) Instruction :
    A CPU instruction that executes multiple operations in parallel with a single instruction.
  • [10]
    MPI (Message Passing Interface) :
    Communication API that describes communication processing for achieving parallel processing on a supercomputer.
  • [11]
    Qiskit :
    Quantum software development tool developed by IBM and released as open source.
  • [12]
    Partnering with QunaSys :
    Quantum Computer Venture QunaSys Raises $1.24 billion Series B” (March 28, 2022 QunaSys press release)
  • [13]
    Qamuy :
    Quantum chemical calculation software provided by QunaSys. The input of quantum chemical calculation is translated into a quantum circuit, and calculation on a simulator or an actual machine can be performed seamlessly.

About FujitsuFujitsu is the leading Japanese information and communication technology (ICT) company offering a full range of technology products, solutions and services. Approximately 126,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE:6702) reported consolidated revenues of 3.6 trillion yen (US$34 billion) for the fiscal year ended March 31, 2021. For more information, please see www.fujitsu.com.


Source: Fujitsu

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

AWS Solution Channel

Shutterstock 1648511269

Avoid overspending with AWS Batch using a serverless cost guardian monitoring architecture

Pay-as-you-go resources are a compelling but daunting concept for budget conscious research customers. Uncertainty of cloud costs is a barrier-to-entry for most, and having near real-time cost visibility is critical. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected “how supercomputing is continuously changing the world by Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Gordon Bell Nominee Used LLMs, HPC, Cerebras CS-2 to Predict Covid Variants

November 17, 2022

Large language models (LLMs) have taken the tech world by storm over the past couple of years, dominating headlines with their ability to generate convincing hu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Leading Solution Providers

Contributors

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire