Fujitsu Completes Post-K Supercomputer CPU Prototype, Begins Functionality Trials

June 21, 2018

TOKYO, June 21, 2018 — Fujitsu Limited and RIKEN today announced that the joint development of post-K, a supercomputer that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) has set forth as a successor to the K computer, is moving forward, with the goal of beginning full operations around 2021. Fujitsu has now completed the prototype CPU chip that will serve as the core of post-K, commencing functionality field trials.

With post-K, Fujitsu and RIKEN aim to create the world’s highest-performing supercomputer, capable of tackling a broad range of applications to solve problems not only in the area of science and technology, but to play a role in a wide variety of issues in society. To realize this goal, Fujitsu has adopted the widely used Arm instruction set architecture (ISA) in the CPU, while implementing expanded instructions newly formulated for supercomputers. In addition to further enhancing the high memory bandwidth and double-precision arithmetic performance implemented in the K computer, Fujitsu has also added support for half-precision arithmetic, which remains critical to fields like AI. Now, by verifying the initial operation of prototype CPU chips meeting these design standards, Fujitsu and RIKEN have smoothly cleared an important milestone in system development.

Moving forward, Fujitsu and RIKEN will continue development with an eye toward completing post-K and commencing full operations.

The post-K prototype will be exhibited at ISC 2018, a significant international conference and exhibition for high performance computing, which will be held in Germany from June 24-28.

Background

Fujitsu and RIKEN began joint development of the K computer in 2006, which was completed and commenced full operations in 2012. The K computer continues to deliver world-leading performance on major indicators of practical supercomputer performance, operating as an indispensable R&D platform for cutting-edge research.

As a successor to the K computer, post-K is also expected to simultaneously serve as a cutting-edge R&D platform for resolving a variety of scientific and society-wide issues, as well as an important platform supporting the attainment of “Society 5.0”(1), a new, human-centric society envisioned by the Japanese government.

Fujitsu began basic design work with RIKEN in October 2014, undertaking co-design work with application developers in a variety of fields while pushing forward with prototyping and detailed specifications.

Development Status of Post-K

Fujitsu and RIKEN have adopted the widely used Arm architecture, envisioning utilization by a broader user base. In addition to this, Fujitsu worked with Arm to contribute to the Scalable Vector Extension (SVE) in the Armv8-A architecture, which significantly extends the vector processing capabilities for HPC systems, and adopted the results. Post-K is also expected to see expanded use in the AI field, delivering support for half-precision arithmetic, important in workloads such as deep learning, as well as the double-precision arithmetic essential for use cases including computer simulations.

Now that Fujitsu has completed CPU chip prototypes and verified their initial operation, it will commence with functionality trials. Going forward, it will continue further development with RIKEN.

Overview of the Post-K System

Fujitsu and RIKEN continue to improve on the technology first introduced in the K computer, which has a proven record for availability and real-world performance, developing post-K as a supercomputer that offers top-class, real-world performance for a wide variety of application software.

The CPUs, which form the core of the system, utilize the Arm8-A SVE architecture, building on the microarchitecture hardware design experience Fujitsu has cultivated through previous supercomputer development projects, including the K computer. With the memory bandwidth delivered by high performance stacked memory computational performance, the post-K system is optimized to achieve high-level, real-world application performance.

Moreover, by utilizing cutting-edge semiconductor technology and by incorporating an energy-saving design and power control functionality, the CPUs deliver excellent energy savings for its performance.

Fujitsu will continue to provide compatibility with the K computer in the system software for post-K, including in the program development environment. By maintaining continuity in language specifications and microarchitecture, the program assets built up for the K computer can be reliably migrated by recompiling them, which can preserve performance standards. In addition, system software developed by RIKEN, including McKernel, XcalableMP, and FDPS (“Framework for Developing Particle Simulator”), can also be used. Fujitsu anticipates that these assets will prove useful in further improving the real-world performance and convenience of the system.

The Arm architecture used in post-K has been accepted by a wide range of developers and users. Joining this community will make it possible for post-K to utilize a wide range of software assets, including open source software. By simultaneously feeding back the results and technology attained through the development of post-K into the community, Fujitsu also hopes it will contribute to the creation of an ecosystem around the Arm architecture.

Fujitsu and RIKEN are continuing development with the goal of generating cutting-edge research results through the use of post-K. This includes resolving scientific and society-wide issues in areas such as health and longevity, disaster prevention and mitigation, energy, and manufacturing, to effectively contribute to enhanced industrial competitiveness.

System Characteristics

Post-K will be a system featuring world-leading capabilities in (1) energy consumption performance, (2) computational capability, (3) ease of use and convenience for users, and (4) generating groundbreaking results, surpassing other systems around the world in overall strength. Moreover, Fujitsu and RIKEN are collaboratively developing both the system and its applications, aiming for the world’s highest level of versatility, up to one hundred times the application execution performance of the K computer, and a power consumption of 30-40 MW (compared with 12.7 MW for the K computer).

Major Specifications for Post-K

Research Topics Using Post-K

Post-K is expected to generate world-leading results, particularly in scientific and society-wide issues that should be the focus of efforts (priority issues and emerging issues), as shown below. For this reason, Fujitsu and RIKEN are undertaking co-design work with application developers for these issues in post-K system development, with the goal of delivering outstanding performance in a wide range of fields of use.

Priority Issues

  1. The creation of a revolutionary drug discovery platform through functional control of biomolecular systems
  2. Integrated computational life sciences supporting individualized and preventative medicine
  3. The creation of integrative prediction systems for compound disasters caused by earthquakes and tsunamis
  4. Improved predictions of the climate and global environment using observational big data
  5. The development of new foundational technologies for the efficient creation, conversion, storage and use of energy
  6. The development of practical implementations for revolutionary green energy systems
  7. The creation of high performance materials and devices offering new functionality supporting next-generation manufacturing
  8. The development of revolutionary design and manufacturing processes leading near future manufacturing
  9. The elucidation of evolution and the fundamental laws of the universe

Emerging Issues

  1. Taking on the challenges of the outermost frontiers of foundational science
  2. The building of models of the interactions of multiple socioeconomic phenomena, and research into their applications
  3. Clarifying the processes surrounding the formation of extra-solar planets (new earths), and of environmental change on planets in this solar system
  4. The elucidation of the mechanisms of the neural circuitry that produces thought, and its application to artificial intelligence

Comments from Fujitsu, RIKEN, and Arm

Comment from SEVP Akira Kabemoto, Head of the Service Platform Business at Fujitsu Limited
We are extremely pleased to announce genuine progress in the development of the post-K computer. Fujitsu has been developing and delivering the world’s top level supercomputers for over 40 years. The use of supercomputers has expanded beyond contributing to the development of science and technology through simulation to encompass areas like AI, emphasizing their importance as part of the infrastructure of society. With post-K, I believe we’ve combined all the various, cutting-edge technologies we have developed until now to create the world’s leading supercomputer. We hope this will ultimately contribute to the achievement of an abundant, human-centric future filled with dreams.

Comment from Satoshi Matsuoka, Director, RIKEN Center for Computational Science (R-CCS)
Because an architecture suited for high performance computing was co-designed by Fujitsu and R-CCS, the post-K processors are expected to (1) deliver performance far surpassing that of existing general-purpose server processers for many supercomputer applications, and (2) considerably raising the system’s usability by using a broad software ecosystem through the adoption of the Arm instruction set, while at the same time (3) delivering top-class performance not just in simulations, but also in a wide range of fields related to Society 5.0, including artificial intelligence and machine learning, security and blockchain technology, big data, and IoT. In this way, I am certain that post-K will not only contribute world-leading performance to meet the concerns of the people of Japan, it will also be a sign of the revitalization of Japan’s semiconductor technology. Having now verified the operation of the prototype CPU as planned, we have cleared a major step in the path to full operation of post-K around 2021, as well as toward subsequent developments. Going forward, R-CCS intends to even more vigorously pursue research and development, in collaboration with other related parties, in order to begin operations using post-K, the world’s top supercomputer, as soon as possible. Please look forward to it.

Comment from Drew Henry, senior vice president and general manager, Infrastructure Line of Business, Arm
Arm has been deeply engaged with both Fujitsu and RIKEN, working to build an HPC ecosystem for the Armv8-A SVE architecture, opening a new chapter for Arm technology to scale the levels of vector processing. Our collaboration with Fujitsu and RIKEN represents our ongoing commitment to maximizing the success of the post-K design and marks a significant step toward deploying Arm-based technologies for HPC and potentially for a broader set of emerging applications.

Related Websites

Introduction of the Post-K Processor Instruction Set Architecture

RIKEN Center for Computational Science

[1] Society 5.0

A human-centric society that delivers both economic development and resolutions to societal issues through systems that fuse cyberspace (virtual spaces) and physical space (the real world) at a high level

About Fujitsu

Fujitsu is the leading Japanese information and communication technology (ICT) company, offering a full range of technology products, solutions, and services. Approximately 140,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE: 6702) reported consolidated revenues of 4.1 trillion yen (US $39 billion) for the fiscal year ended March 31, 2018. For more information, please see www.fujitsu.com.


Source: Fujitsu 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Leading Solution Providers

Contributors

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This