Fujitsu Completes Post-K Supercomputer CPU Prototype, Begins Functionality Trials

June 21, 2018

TOKYO, June 21, 2018 — Fujitsu Limited and RIKEN today announced that the joint development of post-K, a supercomputer that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) has set forth as a successor to the K computer, is moving forward, with the goal of beginning full operations around 2021. Fujitsu has now completed the prototype CPU chip that will serve as the core of post-K, commencing functionality field trials.

With post-K, Fujitsu and RIKEN aim to create the world’s highest-performing supercomputer, capable of tackling a broad range of applications to solve problems not only in the area of science and technology, but to play a role in a wide variety of issues in society. To realize this goal, Fujitsu has adopted the widely used Arm instruction set architecture (ISA) in the CPU, while implementing expanded instructions newly formulated for supercomputers. In addition to further enhancing the high memory bandwidth and double-precision arithmetic performance implemented in the K computer, Fujitsu has also added support for half-precision arithmetic, which remains critical to fields like AI. Now, by verifying the initial operation of prototype CPU chips meeting these design standards, Fujitsu and RIKEN have smoothly cleared an important milestone in system development.

Moving forward, Fujitsu and RIKEN will continue development with an eye toward completing post-K and commencing full operations.

The post-K prototype will be exhibited at ISC 2018, a significant international conference and exhibition for high performance computing, which will be held in Germany from June 24-28.

Background

Fujitsu and RIKEN began joint development of the K computer in 2006, which was completed and commenced full operations in 2012. The K computer continues to deliver world-leading performance on major indicators of practical supercomputer performance, operating as an indispensable R&D platform for cutting-edge research.

As a successor to the K computer, post-K is also expected to simultaneously serve as a cutting-edge R&D platform for resolving a variety of scientific and society-wide issues, as well as an important platform supporting the attainment of “Society 5.0”(1), a new, human-centric society envisioned by the Japanese government.

Fujitsu began basic design work with RIKEN in October 2014, undertaking co-design work with application developers in a variety of fields while pushing forward with prototyping and detailed specifications.

Development Status of Post-K

Fujitsu and RIKEN have adopted the widely used Arm architecture, envisioning utilization by a broader user base. In addition to this, Fujitsu worked with Arm to contribute to the Scalable Vector Extension (SVE) in the Armv8-A architecture, which significantly extends the vector processing capabilities for HPC systems, and adopted the results. Post-K is also expected to see expanded use in the AI field, delivering support for half-precision arithmetic, important in workloads such as deep learning, as well as the double-precision arithmetic essential for use cases including computer simulations.

Now that Fujitsu has completed CPU chip prototypes and verified their initial operation, it will commence with functionality trials. Going forward, it will continue further development with RIKEN.

Overview of the Post-K System

Fujitsu and RIKEN continue to improve on the technology first introduced in the K computer, which has a proven record for availability and real-world performance, developing post-K as a supercomputer that offers top-class, real-world performance for a wide variety of application software.

The CPUs, which form the core of the system, utilize the Arm8-A SVE architecture, building on the microarchitecture hardware design experience Fujitsu has cultivated through previous supercomputer development projects, including the K computer. With the memory bandwidth delivered by high performance stacked memory computational performance, the post-K system is optimized to achieve high-level, real-world application performance.

Moreover, by utilizing cutting-edge semiconductor technology and by incorporating an energy-saving design and power control functionality, the CPUs deliver excellent energy savings for its performance.

Fujitsu will continue to provide compatibility with the K computer in the system software for post-K, including in the program development environment. By maintaining continuity in language specifications and microarchitecture, the program assets built up for the K computer can be reliably migrated by recompiling them, which can preserve performance standards. In addition, system software developed by RIKEN, including McKernel, XcalableMP, and FDPS (“Framework for Developing Particle Simulator”), can also be used. Fujitsu anticipates that these assets will prove useful in further improving the real-world performance and convenience of the system.

The Arm architecture used in post-K has been accepted by a wide range of developers and users. Joining this community will make it possible for post-K to utilize a wide range of software assets, including open source software. By simultaneously feeding back the results and technology attained through the development of post-K into the community, Fujitsu also hopes it will contribute to the creation of an ecosystem around the Arm architecture.

Fujitsu and RIKEN are continuing development with the goal of generating cutting-edge research results through the use of post-K. This includes resolving scientific and society-wide issues in areas such as health and longevity, disaster prevention and mitigation, energy, and manufacturing, to effectively contribute to enhanced industrial competitiveness.

System Characteristics

Post-K will be a system featuring world-leading capabilities in (1) energy consumption performance, (2) computational capability, (3) ease of use and convenience for users, and (4) generating groundbreaking results, surpassing other systems around the world in overall strength. Moreover, Fujitsu and RIKEN are collaboratively developing both the system and its applications, aiming for the world’s highest level of versatility, up to one hundred times the application execution performance of the K computer, and a power consumption of 30-40 MW (compared with 12.7 MW for the K computer).

Major Specifications for Post-K

Research Topics Using Post-K

Post-K is expected to generate world-leading results, particularly in scientific and society-wide issues that should be the focus of efforts (priority issues and emerging issues), as shown below. For this reason, Fujitsu and RIKEN are undertaking co-design work with application developers for these issues in post-K system development, with the goal of delivering outstanding performance in a wide range of fields of use.

Priority Issues

  1. The creation of a revolutionary drug discovery platform through functional control of biomolecular systems
  2. Integrated computational life sciences supporting individualized and preventative medicine
  3. The creation of integrative prediction systems for compound disasters caused by earthquakes and tsunamis
  4. Improved predictions of the climate and global environment using observational big data
  5. The development of new foundational technologies for the efficient creation, conversion, storage and use of energy
  6. The development of practical implementations for revolutionary green energy systems
  7. The creation of high performance materials and devices offering new functionality supporting next-generation manufacturing
  8. The development of revolutionary design and manufacturing processes leading near future manufacturing
  9. The elucidation of evolution and the fundamental laws of the universe

Emerging Issues

  1. Taking on the challenges of the outermost frontiers of foundational science
  2. The building of models of the interactions of multiple socioeconomic phenomena, and research into their applications
  3. Clarifying the processes surrounding the formation of extra-solar planets (new earths), and of environmental change on planets in this solar system
  4. The elucidation of the mechanisms of the neural circuitry that produces thought, and its application to artificial intelligence

Comments from Fujitsu, RIKEN, and Arm

Comment from SEVP Akira Kabemoto, Head of the Service Platform Business at Fujitsu Limited
We are extremely pleased to announce genuine progress in the development of the post-K computer. Fujitsu has been developing and delivering the world’s top level supercomputers for over 40 years. The use of supercomputers has expanded beyond contributing to the development of science and technology through simulation to encompass areas like AI, emphasizing their importance as part of the infrastructure of society. With post-K, I believe we’ve combined all the various, cutting-edge technologies we have developed until now to create the world’s leading supercomputer. We hope this will ultimately contribute to the achievement of an abundant, human-centric future filled with dreams.

Comment from Satoshi Matsuoka, Director, RIKEN Center for Computational Science (R-CCS)
Because an architecture suited for high performance computing was co-designed by Fujitsu and R-CCS, the post-K processors are expected to (1) deliver performance far surpassing that of existing general-purpose server processers for many supercomputer applications, and (2) considerably raising the system’s usability by using a broad software ecosystem through the adoption of the Arm instruction set, while at the same time (3) delivering top-class performance not just in simulations, but also in a wide range of fields related to Society 5.0, including artificial intelligence and machine learning, security and blockchain technology, big data, and IoT. In this way, I am certain that post-K will not only contribute world-leading performance to meet the concerns of the people of Japan, it will also be a sign of the revitalization of Japan’s semiconductor technology. Having now verified the operation of the prototype CPU as planned, we have cleared a major step in the path to full operation of post-K around 2021, as well as toward subsequent developments. Going forward, R-CCS intends to even more vigorously pursue research and development, in collaboration with other related parties, in order to begin operations using post-K, the world’s top supercomputer, as soon as possible. Please look forward to it.

Comment from Drew Henry, senior vice president and general manager, Infrastructure Line of Business, Arm
Arm has been deeply engaged with both Fujitsu and RIKEN, working to build an HPC ecosystem for the Armv8-A SVE architecture, opening a new chapter for Arm technology to scale the levels of vector processing. Our collaboration with Fujitsu and RIKEN represents our ongoing commitment to maximizing the success of the post-K design and marks a significant step toward deploying Arm-based technologies for HPC and potentially for a broader set of emerging applications.

Related Websites

Introduction of the Post-K Processor Instruction Set Architecture

RIKEN Center for Computational Science

[1] Society 5.0

A human-centric society that delivers both economic development and resolutions to societal issues through systems that fuse cyberspace (virtual spaces) and physical space (the real world) at a high level

About Fujitsu

Fujitsu is the leading Japanese information and communication technology (ICT) company, offering a full range of technology products, solutions, and services. Approximately 140,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE: 6702) reported consolidated revenues of 4.1 trillion yen (US $39 billion) for the fiscal year ended March 31, 2018. For more information, please see www.fujitsu.com.


Source: Fujitsu 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire