Fujitsu Completes Post-K Supercomputer CPU Prototype, Begins Functionality Trials

June 21, 2018

TOKYO, June 21, 2018 — Fujitsu Limited and RIKEN today announced that the joint development of post-K, a supercomputer that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) has set forth as a successor to the K computer, is moving forward, with the goal of beginning full operations around 2021. Fujitsu has now completed the prototype CPU chip that will serve as the core of post-K, commencing functionality field trials.

With post-K, Fujitsu and RIKEN aim to create the world’s highest-performing supercomputer, capable of tackling a broad range of applications to solve problems not only in the area of science and technology, but to play a role in a wide variety of issues in society. To realize this goal, Fujitsu has adopted the widely used Arm instruction set architecture (ISA) in the CPU, while implementing expanded instructions newly formulated for supercomputers. In addition to further enhancing the high memory bandwidth and double-precision arithmetic performance implemented in the K computer, Fujitsu has also added support for half-precision arithmetic, which remains critical to fields like AI. Now, by verifying the initial operation of prototype CPU chips meeting these design standards, Fujitsu and RIKEN have smoothly cleared an important milestone in system development.

Moving forward, Fujitsu and RIKEN will continue development with an eye toward completing post-K and commencing full operations.

The post-K prototype will be exhibited at ISC 2018, a significant international conference and exhibition for high performance computing, which will be held in Germany from June 24-28.

Background

Fujitsu and RIKEN began joint development of the K computer in 2006, which was completed and commenced full operations in 2012. The K computer continues to deliver world-leading performance on major indicators of practical supercomputer performance, operating as an indispensable R&D platform for cutting-edge research.

As a successor to the K computer, post-K is also expected to simultaneously serve as a cutting-edge R&D platform for resolving a variety of scientific and society-wide issues, as well as an important platform supporting the attainment of “Society 5.0”(1), a new, human-centric society envisioned by the Japanese government.

Fujitsu began basic design work with RIKEN in October 2014, undertaking co-design work with application developers in a variety of fields while pushing forward with prototyping and detailed specifications.

Development Status of Post-K

Fujitsu and RIKEN have adopted the widely used Arm architecture, envisioning utilization by a broader user base. In addition to this, Fujitsu worked with Arm to contribute to the Scalable Vector Extension (SVE) in the Armv8-A architecture, which significantly extends the vector processing capabilities for HPC systems, and adopted the results. Post-K is also expected to see expanded use in the AI field, delivering support for half-precision arithmetic, important in workloads such as deep learning, as well as the double-precision arithmetic essential for use cases including computer simulations.

Now that Fujitsu has completed CPU chip prototypes and verified their initial operation, it will commence with functionality trials. Going forward, it will continue further development with RIKEN.

Overview of the Post-K System

Fujitsu and RIKEN continue to improve on the technology first introduced in the K computer, which has a proven record for availability and real-world performance, developing post-K as a supercomputer that offers top-class, real-world performance for a wide variety of application software.

The CPUs, which form the core of the system, utilize the Arm8-A SVE architecture, building on the microarchitecture hardware design experience Fujitsu has cultivated through previous supercomputer development projects, including the K computer. With the memory bandwidth delivered by high performance stacked memory computational performance, the post-K system is optimized to achieve high-level, real-world application performance.

Moreover, by utilizing cutting-edge semiconductor technology and by incorporating an energy-saving design and power control functionality, the CPUs deliver excellent energy savings for its performance.

Fujitsu will continue to provide compatibility with the K computer in the system software for post-K, including in the program development environment. By maintaining continuity in language specifications and microarchitecture, the program assets built up for the K computer can be reliably migrated by recompiling them, which can preserve performance standards. In addition, system software developed by RIKEN, including McKernel, XcalableMP, and FDPS (“Framework for Developing Particle Simulator”), can also be used. Fujitsu anticipates that these assets will prove useful in further improving the real-world performance and convenience of the system.

The Arm architecture used in post-K has been accepted by a wide range of developers and users. Joining this community will make it possible for post-K to utilize a wide range of software assets, including open source software. By simultaneously feeding back the results and technology attained through the development of post-K into the community, Fujitsu also hopes it will contribute to the creation of an ecosystem around the Arm architecture.

Fujitsu and RIKEN are continuing development with the goal of generating cutting-edge research results through the use of post-K. This includes resolving scientific and society-wide issues in areas such as health and longevity, disaster prevention and mitigation, energy, and manufacturing, to effectively contribute to enhanced industrial competitiveness.

System Characteristics

Post-K will be a system featuring world-leading capabilities in (1) energy consumption performance, (2) computational capability, (3) ease of use and convenience for users, and (4) generating groundbreaking results, surpassing other systems around the world in overall strength. Moreover, Fujitsu and RIKEN are collaboratively developing both the system and its applications, aiming for the world’s highest level of versatility, up to one hundred times the application execution performance of the K computer, and a power consumption of 30-40 MW (compared with 12.7 MW for the K computer).

Major Specifications for Post-K

Research Topics Using Post-K

Post-K is expected to generate world-leading results, particularly in scientific and society-wide issues that should be the focus of efforts (priority issues and emerging issues), as shown below. For this reason, Fujitsu and RIKEN are undertaking co-design work with application developers for these issues in post-K system development, with the goal of delivering outstanding performance in a wide range of fields of use.

Priority Issues

  1. The creation of a revolutionary drug discovery platform through functional control of biomolecular systems
  2. Integrated computational life sciences supporting individualized and preventative medicine
  3. The creation of integrative prediction systems for compound disasters caused by earthquakes and tsunamis
  4. Improved predictions of the climate and global environment using observational big data
  5. The development of new foundational technologies for the efficient creation, conversion, storage and use of energy
  6. The development of practical implementations for revolutionary green energy systems
  7. The creation of high performance materials and devices offering new functionality supporting next-generation manufacturing
  8. The development of revolutionary design and manufacturing processes leading near future manufacturing
  9. The elucidation of evolution and the fundamental laws of the universe

Emerging Issues

  1. Taking on the challenges of the outermost frontiers of foundational science
  2. The building of models of the interactions of multiple socioeconomic phenomena, and research into their applications
  3. Clarifying the processes surrounding the formation of extra-solar planets (new earths), and of environmental change on planets in this solar system
  4. The elucidation of the mechanisms of the neural circuitry that produces thought, and its application to artificial intelligence

Comments from Fujitsu, RIKEN, and Arm

Comment from SEVP Akira Kabemoto, Head of the Service Platform Business at Fujitsu Limited
We are extremely pleased to announce genuine progress in the development of the post-K computer. Fujitsu has been developing and delivering the world’s top level supercomputers for over 40 years. The use of supercomputers has expanded beyond contributing to the development of science and technology through simulation to encompass areas like AI, emphasizing their importance as part of the infrastructure of society. With post-K, I believe we’ve combined all the various, cutting-edge technologies we have developed until now to create the world’s leading supercomputer. We hope this will ultimately contribute to the achievement of an abundant, human-centric future filled with dreams.

Comment from Satoshi Matsuoka, Director, RIKEN Center for Computational Science (R-CCS)
Because an architecture suited for high performance computing was co-designed by Fujitsu and R-CCS, the post-K processors are expected to (1) deliver performance far surpassing that of existing general-purpose server processers for many supercomputer applications, and (2) considerably raising the system’s usability by using a broad software ecosystem through the adoption of the Arm instruction set, while at the same time (3) delivering top-class performance not just in simulations, but also in a wide range of fields related to Society 5.0, including artificial intelligence and machine learning, security and blockchain technology, big data, and IoT. In this way, I am certain that post-K will not only contribute world-leading performance to meet the concerns of the people of Japan, it will also be a sign of the revitalization of Japan’s semiconductor technology. Having now verified the operation of the prototype CPU as planned, we have cleared a major step in the path to full operation of post-K around 2021, as well as toward subsequent developments. Going forward, R-CCS intends to even more vigorously pursue research and development, in collaboration with other related parties, in order to begin operations using post-K, the world’s top supercomputer, as soon as possible. Please look forward to it.

Comment from Drew Henry, senior vice president and general manager, Infrastructure Line of Business, Arm
Arm has been deeply engaged with both Fujitsu and RIKEN, working to build an HPC ecosystem for the Armv8-A SVE architecture, opening a new chapter for Arm technology to scale the levels of vector processing. Our collaboration with Fujitsu and RIKEN represents our ongoing commitment to maximizing the success of the post-K design and marks a significant step toward deploying Arm-based technologies for HPC and potentially for a broader set of emerging applications.

Related Websites

Introduction of the Post-K Processor Instruction Set Architecture

RIKEN Center for Computational Science

[1] Society 5.0

A human-centric society that delivers both economic development and resolutions to societal issues through systems that fuse cyberspace (virtual spaces) and physical space (the real world) at a high level

About Fujitsu

Fujitsu is the leading Japanese information and communication technology (ICT) company, offering a full range of technology products, solutions, and services. Approximately 140,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE: 6702) reported consolidated revenues of 4.1 trillion yen (US $39 billion) for the fiscal year ended March 31, 2018. For more information, please see www.fujitsu.com.


Source: Fujitsu 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire