Fujitsu Develops Quantum/HPC Hybrid Computing Tech

November 8, 2022

TOKYO, Nov. 8, 2022 — Fujitsu today announced the development of quantum/HPC hybrid computing technology to optimize workload selection for customers. The new AI-based software, which serves as a precursor to a future computer workload broker technology, automatically selects from different next-generation computing platforms to offer the optimal solution to customers’ problems based on parameters including calculation time, calculation accuracy, and costs.

Figure 1: Image of the computing workload broker

The new technology leverages the power of Fujitsu’s world top-class 39-qubit quantum simulator and the “FUJITSU Supercomputer PRIMEHPC FX 700,” equipped with the same A64FX CPU that powers supercomputer Fugaku, combining and selecting the optimum calculation method for customers’ quantum chemical calculation problems. Crucially, the technology allows users without specialized knowledge to use quantum simulators and HPC technology to provide effective solutions to real-world problems.

World-leading Advanced Computing Technologies for Solutions to 21st Century Problems

Fujitsu has a long track record in developing and providing world-leading computing technologies, exemplified by its development and efforts to commercialize the supercomputer Fugaku, next-generation quantum computing, as well as technologies that bridge the gap between conventional and quantum, like the Digital Annealer and quantum simulators.

To promote the practical development of new quantum algorithms, Fujitsu announced the world’s fastest quantum simulator in March 2022, initiating joint research in the field of materials science with Fujifilm Corporation and Tokyo Electron Ltd.

Easy Access to Next-Gen Computing Tech for Non-computing Experts

Fujitsu is currently working to develop a computing workload broker—a software technology that uses AI to automatically select the appropriate resources from advanced computing technologies and solutions, including large-scale cloud-based HPC, quantum computing, Digital Annealer, as well as quantum simulators to solve customers’ complex problems.
Fujitsu envisions the future computing workload broker as supporting both the automation and the optimization of calculation processing of multiple hardware devices and the optimization of calculation distribution for different platforms. In this way, the computing workload broker will enable high-speed calculations and solutions according to customers’ specific needs.

Figure 2: Comparison of conventional technology and newly developed technology

Outline Quantum /HPC Hybrid Computing Technology

To realize its vision for the computing workload broker, Fujitsu has now developed a quantum/HPC hybrid calculation technology for solving quantum chemical problems to enable calculation-based clarification of the properties of materials used in drug discovery and new material development. The new technology, which serves as a precursor to the computing workload broker, enables high precision calculations at high speed by automatically and optimally combining two types of computers: a quantum simulator and HPC. The features of the new technology are as follows.

  1. Quantum/HPC algorithm discrimination technology — Algorithms used in quantum chemical calculations require repeated calculations until a highly accurate solution is obtained. As the distance between atoms changes, determining whether quantum or HPC algorithms offer the optimal solution to a problem represents a difficult challenge for existing technologies. To this end, Fujitsu developed a solution to determine the accurate algorithm for a problem by analyzing how the algorithm converges on molecules. For problems where classical algorithms do not deliver sufficient results, the technology detects a specific pattern in the convergence state until the algorithm calculates a solution, so that the optimum algorithm can be determined by performing pre-processing on the problem experimentally using HPC algorithms.
  2. Computation time estimation technology — Accurate estimation of the convergence of the various molecular structures represented a complex task in quantum chemical calculations, and it proved difficult to estimate the time and cost required to obtain highly accurate solutions in advance. To address this issue, Fujitsu constructed an AI model able to estimate calculation amounts, costs and time in advance by utilizing an adaptive AI technology developed by Fujitsu to analyze the relationship between the molecular structure, the iterative calculation of the algorithm and the calculation time.
  3. Optimal control technology based on time, cost and accuracy — In order to enable customers to perform calculations at optimal costs and in optimal time, Fujitsu developed a technology that optimizes the performance of quantum chemical calculations. The technology takes into account both the calculation time and cost estimated by the quantum/HPC algorithm discrimination technology and the computation time estimation technology as well as the usage of calculation resources. In this way, the technology enables users to solve quantum chemical calculation problems in a way that best meets their needs without the need to choose from different computational resources themselves.

Future Plans

Moving forward, Fujitsu will verify the effectiveness of this technology and further develop it, with the aim of establishing a new computing workload broker technology in the field of quantum chemical calculations by fiscal 2023. Fujitsu will further continue to develop computing platforms that can be used by anyone without the need for expertise by adding services to Fujitsu Computing as a Service (hereinafter “CaaS”), Fujitsu’s service portfolio to deliver customers access to world-leading computing technologies via the public cloud.

Figure 3: Overview of quantum-HPC hybrid computing technology

About Fujitsu

Fujitsu’s purpose is to make the world more sustainable by building trust in society through innovation. As the digital transformation partner of choice for customers in over 100 countries, our 124,000 employees work to resolve some of the greatest challenges facing humanity. Our range of services and solutions draw on five key technologies: Computing, Networks, AI, Data & Security, and Converging Technologies, which we bring together to deliver sustainability transformation. Fujitsu Limited (TSE:6702) reported consolidated revenues of 3.6 trillion yen (US$32 billion) for the fiscal year ended March 31, 2022 and remains the top digital services company in Japan by market share.


Source: Fujitsu

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

From Exasperation to Exascale: HPE’s Nic Dubé on Frontier’s Untold Story

December 2, 2022

The Frontier supercomputer – still fresh off its chart-topping 1.1 Linpack exaflops run and maintaining its number-one spot on the Top500 list – was still very much in the spotlight at SC22 in Dallas last month. Six Read more…

At SC22, Carbon Emissions and Energy Costs Eclipsed Hardware Efficiency

December 2, 2022

The race to ever-better flops-per-watt and power usage effectiveness (PUE) has, historically, dominated the conversation over sustainability in HPC – but at SC22, held last month in Dallas, something felt different. Ac Read more…

HPC Career Notes: December 2022 Edition

December 1, 2022

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

IBM Quantum Summit: Osprey Flies; Error Handling Progress; Quantum-centric Supercomputing

December 1, 2022

Part scorecard, part grand vision, IBM’s annual Quantum Summit held last month is a fascinating snapshot of IBM’s progress, evolving technology roadmap, and issues facing the quantum landscape broadly. Thankfully, IB Read more…

AWS Introduces a Flurry of New EC2 Instances at re:Invent

November 30, 2022

AWS has announced three new Amazon Elastic Compute Cloud (Amazon EC2) instances powered by AWS-designed chips, as well as several new Intel-powered instances – including ones targeting HPC – at its AWS re:Invent 2022 Read more…

AWS Solution Channel

Shutterstock 110419589

Thank you for visiting AWS at SC22

Accelerate high performance computing (HPC) solutions with AWS. We make extreme-scale compute possible so that you can solve some of the world’s toughest environmental, social, health, and scientific challenges. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaboration, an Intel executive said last week. There are close t Read more…

From Exasperation to Exascale: HPE’s Nic Dubé on Frontier’s Untold Story

December 2, 2022

The Frontier supercomputer – still fresh off its chart-topping 1.1 Linpack exaflops run and maintaining its number-one spot on the Top500 list – was still v Read more…

At SC22, Carbon Emissions and Energy Costs Eclipsed Hardware Efficiency

December 2, 2022

The race to ever-better flops-per-watt and power usage effectiveness (PUE) has, historically, dominated the conversation over sustainability in HPC – but at S Read more…

HPC Career Notes: December 2022 Edition

December 1, 2022

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it Read more…

IBM Quantum Summit: Osprey Flies; Error Handling Progress; Quantum-centric Supercomputing

December 1, 2022

Part scorecard, part grand vision, IBM’s annual Quantum Summit held last month is a fascinating snapshot of IBM’s progress, evolving technology roadmap, and Read more…

AWS Introduces a Flurry of New EC2 Instances at re:Invent

November 30, 2022

AWS has announced three new Amazon Elastic Compute Cloud (Amazon EC2) instances powered by AWS-designed chips, as well as several new Intel-powered instances Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaborat Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the c Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Leading Solution Providers

Contributors

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire