Fujitsu Develops Technology that Reduces Network Switches in Cluster Supercomputers

July 15, 2014

KAWASAKI, Japan, July 15 — Fujitsu Laboratories Ltd. today announced that it has developed a technology that reduces the number of network switches used in a cluster supercomputer system comprised of several thousand units by 40% while maintaining the same level of network performance.

Existing cluster supercomputers typically use a “fat tree” network topology, in which, for example, 6,000 servers would require about 800 switches, or possibly more than 2,000 switches, with network performance that needs redundancy and other features. Networks account for up to about 20% of the power consumed by a supercomputer system, which means there are high expectations for a new network technology that can maintain good network performance with fewer switches.

Fujitsu Laboratories has used a multi-layer full mesh topology in combination with a newly developed communications algorithm that controls transmission sequences to avoid data collisions. This means that, even in all-to-all communications, which are prone to bottlenecks during application execution, performance stays on par with existing technology while using roughly 40% fewer switches, saving energy without sacrificing performance.

Details of this technology are being presented at the Summer United Workshops on Parallel, Distributed and Cooperative Processing 2014 (SWoPP 2014), opening July 28 in Niigata City, Japan.

Background

Cluster supercomputers have been widely used in the fields of manufacturing, such as for the design of mobile phones, cars, and airplanes, as well as scientific technology computing. Increasingly, though, they are being used in new areas, such as in in silico drug discovery and medicine, and to analyze earthquakes and weather phenomena, and these applications require even more powerful supercomputers.

To realize increased supercomputing performance, multiple servers are connected by networks. These servers are equipped with high-performance computation units consisting of accelerators that are typically many-core processors which have multiple CPUs or GPGPUs.

Technological Issues

In order for the supercomputer’s computing performance to be useful to a wide range of applications, the network joining the servers needs to have higher performance. In the fat-tree network topology, tiers are set based on the extent of the servers being connected, and the redundancy of paths in the tree-like network topology that connects the switches results in fast network performance. For example, a system with 6,000 servers would require 800 switches, each with 36 ports, to connect them.

Thanks to the redundancy of routes in the fat-tree topology, when running a fast Fourier transform, for example, as part of an analysis on a cluster supercomputer, all-to-all communications among the servers shows good network performance. Meanwhile, many-core processors in individual servers or accelerators such as GPGPUs produce dramatic jumps in performance. Network performance needs to be improved so that it stays balanced with computational performance, and this requires many more switches, but increasing the number of switches entails the problem of higher costs for materials, electric power, and installed space.

About the Technology

What Fujitsu Laboratories has done is to develop a technology that can accommodate a large number of servers with relatively few switches by considering what would be an optimized data-exchange process, then connecting the cluster in a new way. This reduces the number of switches needed to connect a given number of nodes by roughly 40% compared to a fat-tree network topology while maintaining equivalent performance levels under the maximum-load communication pattern of all-to-all communications.

Key features of the technology are as follows:

1. Multi-layer full-mesh network topology

Fujitsu Laboratories developed a structure where switches for indirect connections are arrayed around the periphery of a full-mesh framework that connects all switches directly, and multiple full-mesh structures are connected to each other. Compared to a three-layer fat-tree network topology, this eliminates an entire layer of switches, with switch ports being used more efficiently and a smaller number of switches in use.

2.Data-exchange process avoids path contention 

In all-to-all communications, where each server is exchanging data with every other server, reducing the number of switches also reduces the number of paths between servers, which is likely to result in collisions. Fujitsu Laboratories was able to achieve all-to-all communications performance on par with a fat-tree topology by taking advantage of the multi-layer full mesh network topology in the process of transferring data between servers. By using scheduling, servers connected to the various apex switches (A through F) will divert to a different apex, and also by avoid collisions within paths that traverse different layers (a1 through d3).

Results

This technology makes it possible to maintain the performance of large-scale cluster supercomputers that are needed for such applications as drug discovery and medicine, and to analyze earthquakes and weather phenomena, while lowering facility costs and power costs. This thereby enables the provision of supercomputers that achieve high performance while conserving energy. 

Future Plans

Fujitsu Laboratories plans to have a practical implementation of this technology during fiscal 2015. It also plans to continue research into topologies for large-scale computing systems that do not depend on increasing numbers of switches.

About Fujitsu Limited

Fujitsu is the leading Japanese information and communication technology (ICT) company offering a full range of technology products, solutions and services. Approximately 170,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE: 6702) reported consolidated revenues of 4.4 trillion yen (US$47 billion) for the fiscal year ended March 31, 2013 For more information, please see www.fujitsu.com.

Source: Fujitsu Limited

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conferen Read more…

By Tiffany Trader

U of Illinois, NCSA Launch First US Nanomanufacturing Node

September 14, 2017

The University of Illinois at Urbana-Champaign together with the National Center for Supercomputing Applications (NCSA) have launched the United States's first computational node aimed at the development of nanomanufactu Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

PGI Rolls Out Support for Volta 100 in its 2017 Compilers and Tools Suite

September 14, 2017

PGI today announced a fairly lengthy list of new features to version 17.7 of its 2017 Compilers and Tools. The centerpiece of the additions is support for the Tesla Volta 100 GPU, Nvidia’s newest flagship silicon annou Read more…

By John Russell

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

Need Data Science CyberInfrastructure? Check with RENCI’s xDCI Concierge

September 6, 2017

For about a year the Renaissance Computing Institute (RENCI) has been assembling best practices and open source components around data-driven scientific researc Read more…

By John Russell

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This